精确运动处方的时机:同样的时机未必适合所有人

Jonatan R. Ruiz, Raquel Sevilla-Lorente, Francisco J. Amaro-Gahete
{"title":"精确运动处方的时机:同样的时机未必适合所有人","authors":"Jonatan R. Ruiz, Raquel Sevilla-Lorente, Francisco J. Amaro-Gahete","doi":"10.1113/jp285958","DOIUrl":null,"url":null,"abstract":"<p>Precision medicine is a transformative approach to health care that addresses the inherent variability among individuals in terms of genetics, environment and lifestyle. It involves the customization of medical care to the unique characteristics of each individual, with the aim of optimizing treatment efficacy and minimizing adverse effects. This paradigm shift is made possible by the integration of comprehensive data, including multi-omics and clinical information, which allows for a more nuanced understanding of pathophysiological mechanisms and individual responses to interventions. One of them, also considered as medicine, is exercise. In the realm of exercise programmes for the prevention and treatment of a range of acute and chronic conditions, precision exercise prescription becomes particularly crucial. The variable nature of individual responses to exercise requires a tailored approach to maximize the benefits for each person, while reducing the risks of injury. Within the context of metabolic syndrome (MetS) acting as a crucial factor in the ongoing global cardiovascular crisis, and knowing the key role of exercise in the development and progression of MetS, the capability to forecast individual responses facilitates the development of personalized exercise strategies designed to address an individual's distinct risk profile.</p>\n<p>A widely recognized approach for customizing and adjusting exercise programming to align with individual goals, lifestyle, preferences and progress is encapsulated in the FITT principle, which includes frequency, intensity, time and type of exercise. By manipulating FITT criteria, a nearly limitless number of combinations can be devised to suit specific objectives. There is increasing evidence on the potential need to include a new principle, which also starts with T, and stands for time of the day when the exercise is performed. A new study by Morales-Palomo and collaborators shows that morning high-intensity interval exercise is more effective on reducing systolic blood pressure and insulin levels that afternoon exercise in adults with MetS (Morales-Palomo et al., <span>2023</span>). They conducted a 16-week exercise-based randomized controlled trial, in which 139 middle-aged adults (49 women, body mass index 30.6 ± 3.0 kg m<sup>−2</sup>) were allocated into morning exercise, afternoon exercise or a non-exercise control group. As expected, both exercise groups improved several cardiovascular disease risk factors, including total and central body fat, systolic blood pressure, insulin levels and cardiorespiratory fitness, compared with the control group. Interestingly, they showed that the morning exercise group improved their systolic blood pressure and insulin levels to a greater extent than those who exercised in the afternoon, yet no differences in fasting glucose levels were noted between the morning and afternoon exercise groups. Previous exercise interventions conducted on both healthy and metabolically compromised individuals showed either equivalent benefits between morning and afternoon exercise or a greater advantage for exercising in the afternoon (Brito et al., <span>2022</span>; Galan-Lopez &amp; Casuso, <span>2023</span>). These mixed results emphasize the need for a thorough investigation into the dimension of exercise timing, shedding light on potential variations in outcomes across heterogeneous populations.</p>\n<p>Physiological processes in humans, such as glycaemia and blood pressure homeostasis, are finely orchestrated by circadian rhythms, showing elevated levels in the morning compared with the evening. Certainly, healthy individuals manifest diminished insulin sensitivity and glucose tolerance during the evening as opposed to the morning. Therefore, it is plausible to believe that exercise exerts different physiological effects on the cardiovascular and endocrine systems depending on the time of the day when it is performed. However, we conducted a systematic review and meta-analysis and found no influence of the time of the day on the acute effect of exercise on blood glucose (<i>n</i> = 10 studies) or blood pressure (<i>n</i> = 11 studies) (Sevilla-Lorente et al., <span>2023</span>). A comprehensive analysis of potential moderator variables (i.e. age, body mass index, sex, health status, the intensity and duration of exercise, and hour within the morning or evening) revealed no significant morning <i>versus</i> evening effect. More recently, a meta-analysis (Galan-Lopez &amp; Casuso, <span>2023</span>) focused on the metabolic adaptations to exercise training showed that afternoon exercise tended (standardized mean difference = 0.24, 95% CI = 0.478 to 0.004, <i>I</i><sup>2</sup> = 0%, <i>P</i> = 0.0539) to be more effective than morning exercise training on reducing fasting blood glucose levels, with no differences being observed between morning <i>versus</i> afternoon in glycated haemoglobin, fasting insulin or homeostatic model assessment.</p>\n<p>Importantly, previous studies have focused on glucose levels during fasting conditions, despite the fact that individuals spend the majority of their day in a postprandial state, which might not fully reflect real-world daily glycaemic control. Therefore, the utilization of continuous glucose monitoring devices becomes indispensable in the assessment of glycaemic control, as they provide detailed information on 24 h mean glucose levels, enabling a more precise analysis. Another relevant aspect to consider is that most prior investigations have either centred predominantly on men or have combined both men and women in their analyses, although women generally exhibit greater insulin sensitivity than men. This underscores the significance of considering sex-specific differences when exercise interventions are implemented and emphasizes the necessity to conduct separate analyses for men and women. Moreover, there is a recent emphasis on considering sex as a biological variable in research, because there is a lack of comprehensive examination of sex differences in the effects of exercise on health outcomes.</p>\n<p>Descriptors outlining exercise interventions in trials often fall short in terms of optimal detailing in study reports. To address this issue, the Consensus on Exercise Reporting Template (CERT) was developed to offer guidance regarding a fundamental set of key elements deemed crucial for reporting replicable exercise programmes (Slade et al., <span>2016</span>). In this CERT list, the time of day when the exercise is performed was not included. Although conclusive evidence on the optimal timing for exercise is lacking, documenting this aspect will enhance our understanding of whether the benefits of exercise can be maximized by individually adjusting the time of day when it is performed.</p>\n<p>As we learn more about individual health, personalized exercise prescription is becoming a leading way to improve well-being and lower the risk of disease.</p>","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time for precision exercise prescription: the same timing may not fit all\",\"authors\":\"Jonatan R. Ruiz, Raquel Sevilla-Lorente, Francisco J. Amaro-Gahete\",\"doi\":\"10.1113/jp285958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precision medicine is a transformative approach to health care that addresses the inherent variability among individuals in terms of genetics, environment and lifestyle. It involves the customization of medical care to the unique characteristics of each individual, with the aim of optimizing treatment efficacy and minimizing adverse effects. This paradigm shift is made possible by the integration of comprehensive data, including multi-omics and clinical information, which allows for a more nuanced understanding of pathophysiological mechanisms and individual responses to interventions. One of them, also considered as medicine, is exercise. In the realm of exercise programmes for the prevention and treatment of a range of acute and chronic conditions, precision exercise prescription becomes particularly crucial. The variable nature of individual responses to exercise requires a tailored approach to maximize the benefits for each person, while reducing the risks of injury. Within the context of metabolic syndrome (MetS) acting as a crucial factor in the ongoing global cardiovascular crisis, and knowing the key role of exercise in the development and progression of MetS, the capability to forecast individual responses facilitates the development of personalized exercise strategies designed to address an individual's distinct risk profile.</p>\\n<p>A widely recognized approach for customizing and adjusting exercise programming to align with individual goals, lifestyle, preferences and progress is encapsulated in the FITT principle, which includes frequency, intensity, time and type of exercise. By manipulating FITT criteria, a nearly limitless number of combinations can be devised to suit specific objectives. There is increasing evidence on the potential need to include a new principle, which also starts with T, and stands for time of the day when the exercise is performed. A new study by Morales-Palomo and collaborators shows that morning high-intensity interval exercise is more effective on reducing systolic blood pressure and insulin levels that afternoon exercise in adults with MetS (Morales-Palomo et al., <span>2023</span>). They conducted a 16-week exercise-based randomized controlled trial, in which 139 middle-aged adults (49 women, body mass index 30.6 ± 3.0 kg m<sup>−2</sup>) were allocated into morning exercise, afternoon exercise or a non-exercise control group. As expected, both exercise groups improved several cardiovascular disease risk factors, including total and central body fat, systolic blood pressure, insulin levels and cardiorespiratory fitness, compared with the control group. Interestingly, they showed that the morning exercise group improved their systolic blood pressure and insulin levels to a greater extent than those who exercised in the afternoon, yet no differences in fasting glucose levels were noted between the morning and afternoon exercise groups. Previous exercise interventions conducted on both healthy and metabolically compromised individuals showed either equivalent benefits between morning and afternoon exercise or a greater advantage for exercising in the afternoon (Brito et al., <span>2022</span>; Galan-Lopez &amp; Casuso, <span>2023</span>). These mixed results emphasize the need for a thorough investigation into the dimension of exercise timing, shedding light on potential variations in outcomes across heterogeneous populations.</p>\\n<p>Physiological processes in humans, such as glycaemia and blood pressure homeostasis, are finely orchestrated by circadian rhythms, showing elevated levels in the morning compared with the evening. Certainly, healthy individuals manifest diminished insulin sensitivity and glucose tolerance during the evening as opposed to the morning. Therefore, it is plausible to believe that exercise exerts different physiological effects on the cardiovascular and endocrine systems depending on the time of the day when it is performed. However, we conducted a systematic review and meta-analysis and found no influence of the time of the day on the acute effect of exercise on blood glucose (<i>n</i> = 10 studies) or blood pressure (<i>n</i> = 11 studies) (Sevilla-Lorente et al., <span>2023</span>). A comprehensive analysis of potential moderator variables (i.e. age, body mass index, sex, health status, the intensity and duration of exercise, and hour within the morning or evening) revealed no significant morning <i>versus</i> evening effect. More recently, a meta-analysis (Galan-Lopez &amp; Casuso, <span>2023</span>) focused on the metabolic adaptations to exercise training showed that afternoon exercise tended (standardized mean difference = 0.24, 95% CI = 0.478 to 0.004, <i>I</i><sup>2</sup> = 0%, <i>P</i> = 0.0539) to be more effective than morning exercise training on reducing fasting blood glucose levels, with no differences being observed between morning <i>versus</i> afternoon in glycated haemoglobin, fasting insulin or homeostatic model assessment.</p>\\n<p>Importantly, previous studies have focused on glucose levels during fasting conditions, despite the fact that individuals spend the majority of their day in a postprandial state, which might not fully reflect real-world daily glycaemic control. Therefore, the utilization of continuous glucose monitoring devices becomes indispensable in the assessment of glycaemic control, as they provide detailed information on 24 h mean glucose levels, enabling a more precise analysis. Another relevant aspect to consider is that most prior investigations have either centred predominantly on men or have combined both men and women in their analyses, although women generally exhibit greater insulin sensitivity than men. This underscores the significance of considering sex-specific differences when exercise interventions are implemented and emphasizes the necessity to conduct separate analyses for men and women. Moreover, there is a recent emphasis on considering sex as a biological variable in research, because there is a lack of comprehensive examination of sex differences in the effects of exercise on health outcomes.</p>\\n<p>Descriptors outlining exercise interventions in trials often fall short in terms of optimal detailing in study reports. To address this issue, the Consensus on Exercise Reporting Template (CERT) was developed to offer guidance regarding a fundamental set of key elements deemed crucial for reporting replicable exercise programmes (Slade et al., <span>2016</span>). In this CERT list, the time of day when the exercise is performed was not included. Although conclusive evidence on the optimal timing for exercise is lacking, documenting this aspect will enhance our understanding of whether the benefits of exercise can be maximized by individually adjusting the time of day when it is performed.</p>\\n<p>As we learn more about individual health, personalized exercise prescription is becoming a leading way to improve well-being and lower the risk of disease.</p>\",\"PeriodicalId\":501632,\"journal\":{\"name\":\"The Journal of Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1113/jp285958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/jp285958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重要的是,以往的研究侧重于空腹状态下的血糖水平,尽管人一天中大部分时间都处于餐后状态,但这可能无法完全反映真实世界的日常血糖控制情况。因此,在评估血糖控制情况时,连续血糖监测设备是不可或缺的,因为它们能提供 24 小时平均血糖水平的详细信息,从而能进行更精确的分析。另一个需要考虑的相关方面是,尽管女性通常比男性表现出更高的胰岛素敏感性,但之前的大多数研究要么主要以男性为中心,要么将男性和女性结合起来进行分析。这凸显了在实施运动干预时考虑性别差异的重要性,并强调了对男性和女性进行单独分析的必要性。此外,由于缺乏对运动对健康结果影响的性别差异的全面研究,近来人们开始强调在研究中将性别作为一个生物变量来考虑。为解决这一问题,研究人员开发了运动报告模板共识(CERT),为报告可复制的运动项目提供了一套被认为至关重要的基本要素指导(Slade 等人,2016 年)。在这份 CERT 清单中,没有包括每天进行锻炼的时间。随着我们对个人健康的了解越来越多,个性化运动处方正成为改善健康和降低疾病风险的主要方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time for precision exercise prescription: the same timing may not fit all

Precision medicine is a transformative approach to health care that addresses the inherent variability among individuals in terms of genetics, environment and lifestyle. It involves the customization of medical care to the unique characteristics of each individual, with the aim of optimizing treatment efficacy and minimizing adverse effects. This paradigm shift is made possible by the integration of comprehensive data, including multi-omics and clinical information, which allows for a more nuanced understanding of pathophysiological mechanisms and individual responses to interventions. One of them, also considered as medicine, is exercise. In the realm of exercise programmes for the prevention and treatment of a range of acute and chronic conditions, precision exercise prescription becomes particularly crucial. The variable nature of individual responses to exercise requires a tailored approach to maximize the benefits for each person, while reducing the risks of injury. Within the context of metabolic syndrome (MetS) acting as a crucial factor in the ongoing global cardiovascular crisis, and knowing the key role of exercise in the development and progression of MetS, the capability to forecast individual responses facilitates the development of personalized exercise strategies designed to address an individual's distinct risk profile.

A widely recognized approach for customizing and adjusting exercise programming to align with individual goals, lifestyle, preferences and progress is encapsulated in the FITT principle, which includes frequency, intensity, time and type of exercise. By manipulating FITT criteria, a nearly limitless number of combinations can be devised to suit specific objectives. There is increasing evidence on the potential need to include a new principle, which also starts with T, and stands for time of the day when the exercise is performed. A new study by Morales-Palomo and collaborators shows that morning high-intensity interval exercise is more effective on reducing systolic blood pressure and insulin levels that afternoon exercise in adults with MetS (Morales-Palomo et al., 2023). They conducted a 16-week exercise-based randomized controlled trial, in which 139 middle-aged adults (49 women, body mass index 30.6 ± 3.0 kg m−2) were allocated into morning exercise, afternoon exercise or a non-exercise control group. As expected, both exercise groups improved several cardiovascular disease risk factors, including total and central body fat, systolic blood pressure, insulin levels and cardiorespiratory fitness, compared with the control group. Interestingly, they showed that the morning exercise group improved their systolic blood pressure and insulin levels to a greater extent than those who exercised in the afternoon, yet no differences in fasting glucose levels were noted between the morning and afternoon exercise groups. Previous exercise interventions conducted on both healthy and metabolically compromised individuals showed either equivalent benefits between morning and afternoon exercise or a greater advantage for exercising in the afternoon (Brito et al., 2022; Galan-Lopez & Casuso, 2023). These mixed results emphasize the need for a thorough investigation into the dimension of exercise timing, shedding light on potential variations in outcomes across heterogeneous populations.

Physiological processes in humans, such as glycaemia and blood pressure homeostasis, are finely orchestrated by circadian rhythms, showing elevated levels in the morning compared with the evening. Certainly, healthy individuals manifest diminished insulin sensitivity and glucose tolerance during the evening as opposed to the morning. Therefore, it is plausible to believe that exercise exerts different physiological effects on the cardiovascular and endocrine systems depending on the time of the day when it is performed. However, we conducted a systematic review and meta-analysis and found no influence of the time of the day on the acute effect of exercise on blood glucose (n = 10 studies) or blood pressure (n = 11 studies) (Sevilla-Lorente et al., 2023). A comprehensive analysis of potential moderator variables (i.e. age, body mass index, sex, health status, the intensity and duration of exercise, and hour within the morning or evening) revealed no significant morning versus evening effect. More recently, a meta-analysis (Galan-Lopez & Casuso, 2023) focused on the metabolic adaptations to exercise training showed that afternoon exercise tended (standardized mean difference = 0.24, 95% CI = 0.478 to 0.004, I2 = 0%, P = 0.0539) to be more effective than morning exercise training on reducing fasting blood glucose levels, with no differences being observed between morning versus afternoon in glycated haemoglobin, fasting insulin or homeostatic model assessment.

Importantly, previous studies have focused on glucose levels during fasting conditions, despite the fact that individuals spend the majority of their day in a postprandial state, which might not fully reflect real-world daily glycaemic control. Therefore, the utilization of continuous glucose monitoring devices becomes indispensable in the assessment of glycaemic control, as they provide detailed information on 24 h mean glucose levels, enabling a more precise analysis. Another relevant aspect to consider is that most prior investigations have either centred predominantly on men or have combined both men and women in their analyses, although women generally exhibit greater insulin sensitivity than men. This underscores the significance of considering sex-specific differences when exercise interventions are implemented and emphasizes the necessity to conduct separate analyses for men and women. Moreover, there is a recent emphasis on considering sex as a biological variable in research, because there is a lack of comprehensive examination of sex differences in the effects of exercise on health outcomes.

Descriptors outlining exercise interventions in trials often fall short in terms of optimal detailing in study reports. To address this issue, the Consensus on Exercise Reporting Template (CERT) was developed to offer guidance regarding a fundamental set of key elements deemed crucial for reporting replicable exercise programmes (Slade et al., 2016). In this CERT list, the time of day when the exercise is performed was not included. Although conclusive evidence on the optimal timing for exercise is lacking, documenting this aspect will enhance our understanding of whether the benefits of exercise can be maximized by individually adjusting the time of day when it is performed.

As we learn more about individual health, personalized exercise prescription is becoming a leading way to improve well-being and lower the risk of disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tilted but not down: Exercise during bed rest improves mitochondrial function in older adults. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon. Mathematical modelling of the train station of the heart: the atrio-ventricular node. Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension. Protein kinase C epsilon contributes to chronic mechanoreflex sensitization in rats with heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1