Tau 和神经退行性变

IF 2.4 4区 生物学 Q4 CELL BIOLOGY Cytoskeleton Pub Date : 2023-12-10 DOI:10.1002/cm.21812
Michel Goedert, R. Anthony Crowther, Sjors H. W. Scheres, Maria Grazia Spillantini
{"title":"Tau 和神经退行性变","authors":"Michel Goedert,&nbsp;R. Anthony Crowther,&nbsp;Sjors H. W. Scheres,&nbsp;Maria Grazia Spillantini","doi":"10.1002/cm.21812","DOIUrl":null,"url":null,"abstract":"<p>First identified in 1975, tau was implicated in Alzheimer's disease 10 years later. Filamentous tangle inclusions were known to be made of hyperphosphorylated tau by 1991, with similar inclusions gaining recognition for being associated with other neurodegenerative diseases. In 1998, mutations in <i>MAPT</i>, the gene that encodes tau, were identified as the cause of a dominantly inherited form of frontotemporal dementia with abundant filamentous tau inclusions. While this result indicated that assembly of tau into aberrant filaments is sufficient to drive neurodegeneration and dementia, most cases of tauopathy are sporadic. More recent work in experimental systems showed that filamentous assemblies of tau may first form in one brain area, and then spread to others in a prion-like fashion. Beginning in 2017, work on human brains using high-resolution techniques has led to a structure-based classification of tauopathies, which has opened the door to a better understanding of the significance of tau filament formation.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 1","pages":"95-102"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21812","citationCount":"0","resultStr":"{\"title\":\"Tau and neurodegeneration\",\"authors\":\"Michel Goedert,&nbsp;R. Anthony Crowther,&nbsp;Sjors H. W. Scheres,&nbsp;Maria Grazia Spillantini\",\"doi\":\"10.1002/cm.21812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First identified in 1975, tau was implicated in Alzheimer's disease 10 years later. Filamentous tangle inclusions were known to be made of hyperphosphorylated tau by 1991, with similar inclusions gaining recognition for being associated with other neurodegenerative diseases. In 1998, mutations in <i>MAPT</i>, the gene that encodes tau, were identified as the cause of a dominantly inherited form of frontotemporal dementia with abundant filamentous tau inclusions. While this result indicated that assembly of tau into aberrant filaments is sufficient to drive neurodegeneration and dementia, most cases of tauopathy are sporadic. More recent work in experimental systems showed that filamentous assemblies of tau may first form in one brain area, and then spread to others in a prion-like fashion. Beginning in 2017, work on human brains using high-resolution techniques has led to a structure-based classification of tauopathies, which has opened the door to a better understanding of the significance of tau filament formation.</p>\",\"PeriodicalId\":55186,\"journal\":{\"name\":\"Cytoskeleton\",\"volume\":\"81 1\",\"pages\":\"95-102\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21812\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytoskeleton\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cm.21812\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cm.21812","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

tau 于 1975 年首次被发现,10 年后被认为与阿尔茨海默病有关。1991 年,人们知道丝状纠结内含物是由高磷酸化的 tau 构成的,类似的内含物因与其他神经退行性疾病相关而得到认可。1998 年,编码 tau 的基因 MAPT 发生突变,被确定为一种显性遗传性额颞叶痴呆症的病因,该病伴有大量的丝状 tau 包涵体。虽然这一结果表明,tau组装成异常丝状物足以导致神经变性和痴呆,但大多数tau病病例都是散发性的。最近在实验系统中进行的研究表明,tau的丝状集合体可能首先在一个脑区形成,然后以类似朊病毒的方式扩散到其他脑区。从2017年开始,利用高分辨率技术对人类大脑进行研究,从而对tau病进行了基于结构的分类,这为更好地理解tau丝形成的意义打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tau and neurodegeneration

First identified in 1975, tau was implicated in Alzheimer's disease 10 years later. Filamentous tangle inclusions were known to be made of hyperphosphorylated tau by 1991, with similar inclusions gaining recognition for being associated with other neurodegenerative diseases. In 1998, mutations in MAPT, the gene that encodes tau, were identified as the cause of a dominantly inherited form of frontotemporal dementia with abundant filamentous tau inclusions. While this result indicated that assembly of tau into aberrant filaments is sufficient to drive neurodegeneration and dementia, most cases of tauopathy are sporadic. More recent work in experimental systems showed that filamentous assemblies of tau may first form in one brain area, and then spread to others in a prion-like fashion. Beginning in 2017, work on human brains using high-resolution techniques has led to a structure-based classification of tauopathies, which has opened the door to a better understanding of the significance of tau filament formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytoskeleton
Cytoskeleton CELL BIOLOGY-
CiteScore
5.50
自引率
3.40%
发文量
24
审稿时长
6-12 weeks
期刊介绍: Cytoskeleton focuses on all aspects of cytoskeletal research in healthy and diseased states, spanning genetic and cell biological observations, biochemical, biophysical and structural studies, mathematical modeling and theory. This includes, but is certainly not limited to, classic polymer systems of eukaryotic cells and their structural sites of attachment on membranes and organelles, as well as the bacterial cytoskeleton, the nucleoskeleton, and uncoventional polymer systems with structural/organizational roles. Cytoskeleton is published in 12 issues annually, and special issues will be dedicated to especially-active or newly-emerging areas of cytoskeletal research.
期刊最新文献
Issue Information Inner Front Cover Image Front Cover Image Inner Back Cover Image Back Cover Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1