{"title":"霍尔电导理论及其与轨道磁感应强度的精确关系","authors":"Masao Ogata","doi":"10.7566/jpsj.93.013703","DOIUrl":null,"url":null,"abstract":"A new formula for Hall conductivity is derived in terms of retarded and advanced Green’s functions. It contains transport and thermodynamic contributions and the latter is shown to be closely related to the orbital magnetic susceptibility. The physical interpretation of this relationship is clarified. By studying the Hall coefficient, it is also shown that the thermodynamic contribution becomes dominant at the band edge of the Dirac electron system, where the transport contribution decreases as the carrier density vanishes.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"117 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of Hall Conductivity and Its Exact Relationship to Orbital Magnetic Susceptibility\",\"authors\":\"Masao Ogata\",\"doi\":\"10.7566/jpsj.93.013703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new formula for Hall conductivity is derived in terms of retarded and advanced Green’s functions. It contains transport and thermodynamic contributions and the latter is shown to be closely related to the orbital magnetic susceptibility. The physical interpretation of this relationship is clarified. By studying the Hall coefficient, it is also shown that the thermodynamic contribution becomes dominant at the band edge of the Dirac electron system, where the transport contribution decreases as the carrier density vanishes.\",\"PeriodicalId\":17304,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.013703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.013703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Theory of Hall Conductivity and Its Exact Relationship to Orbital Magnetic Susceptibility
A new formula for Hall conductivity is derived in terms of retarded and advanced Green’s functions. It contains transport and thermodynamic contributions and the latter is shown to be closely related to the orbital magnetic susceptibility. The physical interpretation of this relationship is clarified. By studying the Hall coefficient, it is also shown that the thermodynamic contribution becomes dominant at the band edge of the Dirac electron system, where the transport contribution decreases as the carrier density vanishes.
期刊介绍:
The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below.
Subjects Covered
JPSJ covers all the fields of physics including (but not restricted to)
Elementary particles and fields
Nuclear physics
Atomic and Molecular Physics
Fluid Dynamics
Plasma physics
Physics of Condensed Matter
Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials
Physics of Nanoscale Materials
Optics and Quantum Electronics
Physics of Complex Systems
Mathematical Physics
Chemical physics
Biophysics
Geophysics
Astrophysics.