手掌大小、对振动不敏感、无真空的全光纤光子模块,用于 10-14 级稳定 CW 激光器和频率梳

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2023-12-15 DOI:10.1063/5.0160834
Igju Jeon, Changmin Ahn, Chankyu Kim, Seongmin Park, Wonju Jeon, Lingze Duan, Jungwon Kim
{"title":"手掌大小、对振动不敏感、无真空的全光纤光子模块,用于 10-14 级稳定 CW 激光器和频率梳","authors":"Igju Jeon, Changmin Ahn, Chankyu Kim, Seongmin Park, Wonju Jeon, Lingze Duan, Jungwon Kim","doi":"10.1063/5.0160834","DOIUrl":null,"url":null,"abstract":"Compact and robust frequency-stabilized laser sources are critical for a variety of fields that require stable frequency standards, including field spectroscopy, radio astronomy, microwave generation, and geophysical monitoring. In this work, we applied a simple and compact fiber ring-resonator configuration that can stabilize both a continuous-wave laser and a self-referenced optical frequency comb to a vibration-insensitive optical fiber delay-line. We could achieve a thermal-noise-limited frequency noise level in the 10 Hz–1 kHz offset frequency range for both the continuous-wave laser and the optical frequency comb with the minimal frequency instability of 2.7 × 10−14 at 0.03-s and 2.6 × 10−14 at 0.01-s averaging time, respectively, under non-vacuum conditions. The optical fiber spool, working as a delay reference, is designed to be insensitive to external vibrations, with a vibration sensitivity of sub-10−10 (1/g) and a volume of 32 ml. Finally, the ring-resonator setup is packaged in a palm-sized aluminum case with 171-ml volume with a vibration-insensitive spool, as well as an even smaller 97-ml-volume case with an ultracompact 9-ml miniaturized fiber spool.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"79 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palm-sized, vibration-insensitive, and vacuum-free all-fiber-photonic module for 10−14-level stabilization of CW lasers and frequency combs\",\"authors\":\"Igju Jeon, Changmin Ahn, Chankyu Kim, Seongmin Park, Wonju Jeon, Lingze Duan, Jungwon Kim\",\"doi\":\"10.1063/5.0160834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact and robust frequency-stabilized laser sources are critical for a variety of fields that require stable frequency standards, including field spectroscopy, radio astronomy, microwave generation, and geophysical monitoring. In this work, we applied a simple and compact fiber ring-resonator configuration that can stabilize both a continuous-wave laser and a self-referenced optical frequency comb to a vibration-insensitive optical fiber delay-line. We could achieve a thermal-noise-limited frequency noise level in the 10 Hz–1 kHz offset frequency range for both the continuous-wave laser and the optical frequency comb with the minimal frequency instability of 2.7 × 10−14 at 0.03-s and 2.6 × 10−14 at 0.01-s averaging time, respectively, under non-vacuum conditions. The optical fiber spool, working as a delay reference, is designed to be insensitive to external vibrations, with a vibration sensitivity of sub-10−10 (1/g) and a volume of 32 ml. Finally, the ring-resonator setup is packaged in a palm-sized aluminum case with 171-ml volume with a vibration-insensitive spool, as well as an even smaller 97-ml-volume case with an ultracompact 9-ml miniaturized fiber spool.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160834\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0160834","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对于需要稳定频率标准的各种领域(包括现场光谱学、射电天文学、微波发生和地球物理监测)来说,紧凑而坚固的稳频激光源至关重要。在这项工作中,我们采用了一种简单紧凑的光纤环形谐振器配置,这种配置可以将连续波激光器和自参考光学频率梳稳定在对振动不敏感的光纤延迟线上。在非真空条件下,我们可以使连续波激光器和光学频率梳在 10 Hz-1 kHz 偏移频率范围内达到热噪声限制的频率噪声水平,频率不稳定性分别为 0.03 秒时 2.7 × 10-14 和 0.01 秒平均时间时 2.6 × 10-14。作为延迟基准的光纤线轴对外界振动不敏感,振动灵敏度低于 10-10-10 (1/g),体积为 32 毫升。最后,环形谐振器装置被包装在一个手掌大小、容积为 171 毫升、带有振动不敏感线轴的铝盒中,以及一个容积为 97 毫升、带有 9 毫升超小型微型光纤线轴的更小的铝盒中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Palm-sized, vibration-insensitive, and vacuum-free all-fiber-photonic module for 10−14-level stabilization of CW lasers and frequency combs
Compact and robust frequency-stabilized laser sources are critical for a variety of fields that require stable frequency standards, including field spectroscopy, radio astronomy, microwave generation, and geophysical monitoring. In this work, we applied a simple and compact fiber ring-resonator configuration that can stabilize both a continuous-wave laser and a self-referenced optical frequency comb to a vibration-insensitive optical fiber delay-line. We could achieve a thermal-noise-limited frequency noise level in the 10 Hz–1 kHz offset frequency range for both the continuous-wave laser and the optical frequency comb with the minimal frequency instability of 2.7 × 10−14 at 0.03-s and 2.6 × 10−14 at 0.01-s averaging time, respectively, under non-vacuum conditions. The optical fiber spool, working as a delay reference, is designed to be insensitive to external vibrations, with a vibration sensitivity of sub-10−10 (1/g) and a volume of 32 ml. Finally, the ring-resonator setup is packaged in a palm-sized aluminum case with 171-ml volume with a vibration-insensitive spool, as well as an even smaller 97-ml-volume case with an ultracompact 9-ml miniaturized fiber spool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1