{"title":"统计逆问题中的最优正则化假设检验","authors":"Remo Kretschmann, Daniel Wachsmuth, Frank Werner","doi":"10.1088/1361-6420/ad1132","DOIUrl":null,"url":null,"abstract":"Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of inverse problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in inverse problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions, we derive a family of tests with prescribed level <italic toggle=\"yes\">α</italic> and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"41 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal regularized hypothesis testing in statistical inverse problems\",\"authors\":\"Remo Kretschmann, Daniel Wachsmuth, Frank Werner\",\"doi\":\"10.1088/1361-6420/ad1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of inverse problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in inverse problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions, we derive a family of tests with prescribed level <italic toggle=\\\"yes\\\">α</italic> and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad1132\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal regularized hypothesis testing in statistical inverse problems
Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of inverse problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in inverse problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions, we derive a family of tests with prescribed level α and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.