{"title":"贝叶斯广义加法模型选择,包括快速变异选项","authors":"Virginia X. He, Matt P. Wand","doi":"10.1007/s10182-023-00490-y","DOIUrl":null,"url":null,"abstract":"<div><p>We use Bayesian model selection paradigms, such as group least absolute shrinkage and selection operator priors, to facilitate generalized additive model selection. Our approach allows for the effects of continuous predictors to be categorized as either zero, linear or non-linear. Employment of carefully tailored auxiliary variables results in Gibbsian Markov chain Monte Carlo schemes for practical implementation of the approach. In addition, mean field variational algorithms with closed form updates are obtained. Whilst not as accurate, this fast variational option enhances scalability to very large data sets. A package in the <span>R</span> language aids use in practice.\n</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian generalized additive model selection including a fast variational option\",\"authors\":\"Virginia X. He, Matt P. Wand\",\"doi\":\"10.1007/s10182-023-00490-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use Bayesian model selection paradigms, such as group least absolute shrinkage and selection operator priors, to facilitate generalized additive model selection. Our approach allows for the effects of continuous predictors to be categorized as either zero, linear or non-linear. Employment of carefully tailored auxiliary variables results in Gibbsian Markov chain Monte Carlo schemes for practical implementation of the approach. In addition, mean field variational algorithms with closed form updates are obtained. Whilst not as accurate, this fast variational option enhances scalability to very large data sets. A package in the <span>R</span> language aids use in practice.\\n</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-023-00490-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00490-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian generalized additive model selection including a fast variational option
We use Bayesian model selection paradigms, such as group least absolute shrinkage and selection operator priors, to facilitate generalized additive model selection. Our approach allows for the effects of continuous predictors to be categorized as either zero, linear or non-linear. Employment of carefully tailored auxiliary variables results in Gibbsian Markov chain Monte Carlo schemes for practical implementation of the approach. In addition, mean field variational algorithms with closed form updates are obtained. Whilst not as accurate, this fast variational option enhances scalability to very large data sets. A package in the R language aids use in practice.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.