{"title":"利用铜钡锡硫化物作为背表面场层和带隙分级技术提高 Cu(In(1-x)Ga x )Se2 太阳能电池的效率","authors":"Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni","doi":"10.1088/1361-6641/ad0e7f","DOIUrl":null,"url":null,"abstract":"This work proposes the simulation of graded <inline-formula>\n<tex-math><?CDATA ${\\boldsymbol{Cu}}\\left( {{\\boldsymbol{I}}{{\\boldsymbol{n}}_{1 - {\\boldsymbol{x}}}}{\\boldsymbol{G}}{{\\boldsymbol{a}}_{\\boldsymbol{x}}}} \\right){\\boldsymbol{S}}{{\\boldsymbol{e}}_2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">C</mml:mi><mml:mi mathvariant=\"bold-italic\">u</mml:mi></mml:mrow><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\"bold-italic\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sstad0e7fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of <inline-formula>\n<tex-math><?CDATA ${\\boldsymbol{Cu}}\\left( {{\\boldsymbol{I}}{{\\boldsymbol{n}}_{1 - {\\boldsymbol{x}}}}{\\boldsymbol{G}}{{\\boldsymbol{a}}_{\\boldsymbol{x}}}} \\right){\\boldsymbol{S}}{{\\boldsymbol{e}}_2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">C</mml:mi><mml:mi mathvariant=\"bold-italic\">u</mml:mi></mml:mrow><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\"bold-italic\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sstad0e7fieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. This grading technique significantly improves the device performance such as open circuit voltage (<italic toggle=\"yes\">V</italic>\n<sub>oc</sub>), short circuit current density (<italic toggle=\"yes\">J</italic>\n<sub>sc</sub>), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique\",\"authors\":\"Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni\",\"doi\":\"10.1088/1361-6641/ad0e7f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the simulation of graded <inline-formula>\\n<tex-math><?CDATA ${\\\\boldsymbol{Cu}}\\\\left( {{\\\\boldsymbol{I}}{{\\\\boldsymbol{n}}_{1 - {\\\\boldsymbol{x}}}}{\\\\boldsymbol{G}}{{\\\\boldsymbol{a}}_{\\\\boldsymbol{x}}}} \\\\right){\\\\boldsymbol{S}}{{\\\\boldsymbol{e}}_2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">C</mml:mi><mml:mi mathvariant=\\\"bold-italic\\\">u</mml:mi></mml:mrow><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"sstad0e7fieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of <inline-formula>\\n<tex-math><?CDATA ${\\\\boldsymbol{Cu}}\\\\left( {{\\\\boldsymbol{I}}{{\\\\boldsymbol{n}}_{1 - {\\\\boldsymbol{x}}}}{\\\\boldsymbol{G}}{{\\\\boldsymbol{a}}_{\\\\boldsymbol{x}}}} \\\\right){\\\\boldsymbol{S}}{{\\\\boldsymbol{e}}_2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">C</mml:mi><mml:mi mathvariant=\\\"bold-italic\\\">u</mml:mi></mml:mrow><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"sstad0e7fieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. This grading technique significantly improves the device performance such as open circuit voltage (<italic toggle=\\\"yes\\\">V</italic>\\n<sub>oc</sub>), short circuit current density (<italic toggle=\\\"yes\\\">J</italic>\\n<sub>sc</sub>), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad0e7f\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad0e7f","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique
This work proposes the simulation of graded CuIn1−xGaxSe2–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of CuIn1−xGaxSe2. This grading technique significantly improves the device performance such as open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.