{"title":"测定加州蝶形花早期发育的等比数列,以监测人造湿地的营养吸收情况","authors":"Wilma A. Arce, Dario Achá","doi":"10.1016/j.ecohyd.2023.11.013","DOIUrl":null,"url":null,"abstract":"<p>Studies of <em>Schoenoplectus californicus</em> focus on the development of aboveground biomass estimations. However, below-ground assessments are important for net primary productivity monitoring in wetlands. This study aims to monitor nutrient assimilation by developing allometric models for above and below-ground biomass estimation of <em>S. californicus</em> in constructed wetlands<em>.</em> The plants we evaluated were grown <em>in vitro</em>, allowing us to control the experimental conditions. The results show that shoot length and apex diameter are significant parameters for building our models. Two non-destructive allometric equations were established to predict above and below-ground biomass and the models were highly significant (R<sup>2</sup> = 0.79 and 0.49, <em>p</em> < 0.001). During active growth, both the aboveground and below-ground components showed to be essential for removing nutrients from the water. Both non-destructive equations allowed the monitoring of biomass accumulation in constructed wetlands for seven months, demonstrating that this low-cost method can be used to evaluate the performance of wetlands for wastewater.</p>","PeriodicalId":56070,"journal":{"name":"Ecohydrology & Hydrobiology","volume":"79 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allometric determinations in the early development of Schoenoplectus californicus to monitor nutrient uptake in constructed wetlands\",\"authors\":\"Wilma A. Arce, Dario Achá\",\"doi\":\"10.1016/j.ecohyd.2023.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Studies of <em>Schoenoplectus californicus</em> focus on the development of aboveground biomass estimations. However, below-ground assessments are important for net primary productivity monitoring in wetlands. This study aims to monitor nutrient assimilation by developing allometric models for above and below-ground biomass estimation of <em>S. californicus</em> in constructed wetlands<em>.</em> The plants we evaluated were grown <em>in vitro</em>, allowing us to control the experimental conditions. The results show that shoot length and apex diameter are significant parameters for building our models. Two non-destructive allometric equations were established to predict above and below-ground biomass and the models were highly significant (R<sup>2</sup> = 0.79 and 0.49, <em>p</em> < 0.001). During active growth, both the aboveground and below-ground components showed to be essential for removing nutrients from the water. Both non-destructive equations allowed the monitoring of biomass accumulation in constructed wetlands for seven months, demonstrating that this low-cost method can be used to evaluate the performance of wetlands for wastewater.</p>\",\"PeriodicalId\":56070,\"journal\":{\"name\":\"Ecohydrology & Hydrobiology\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology & Hydrobiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecohyd.2023.11.013\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology & Hydrobiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecohyd.2023.11.013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Allometric determinations in the early development of Schoenoplectus californicus to monitor nutrient uptake in constructed wetlands
Studies of Schoenoplectus californicus focus on the development of aboveground biomass estimations. However, below-ground assessments are important for net primary productivity monitoring in wetlands. This study aims to monitor nutrient assimilation by developing allometric models for above and below-ground biomass estimation of S. californicus in constructed wetlands. The plants we evaluated were grown in vitro, allowing us to control the experimental conditions. The results show that shoot length and apex diameter are significant parameters for building our models. Two non-destructive allometric equations were established to predict above and below-ground biomass and the models were highly significant (R2 = 0.79 and 0.49, p < 0.001). During active growth, both the aboveground and below-ground components showed to be essential for removing nutrients from the water. Both non-destructive equations allowed the monitoring of biomass accumulation in constructed wetlands for seven months, demonstrating that this low-cost method can be used to evaluate the performance of wetlands for wastewater.
期刊介绍:
Ecohydrology & Hydrobiology is an international journal that aims to advance ecohydrology as the study of the interplay between ecological and hydrological processes from molecular to river basin scales, and to promote its implementation as an integrative management tool to harmonize societal needs with biosphere potential.