Tianjing Zhao, Fangyi Wang, Richard Mott, Jack Dekkers, Hao Cheng
{"title":"使用加密的基因型和表型进行合作基因组分析,以保持数据的机密性。","authors":"Tianjing Zhao, Fangyi Wang, Richard Mott, Jack Dekkers, Hao Cheng","doi":"10.1093/genetics/iyad210","DOIUrl":null,"url":null,"abstract":"To adhere to and capitalize on the benefits of the FAIR (Findable, Accessible, Interoperable and Reusable) principles in agricultural genome-to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in research and industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy concerns. Thus there is a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the outcomes of certain statistical analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for single-marker regression in genome-wide association studies using linear mixed models with Gaussian errors. This methodology permits frequentist likelihood-based parameter estimation and inference. In this paper, we extend HEGP to broader applications in genome-to-phenome analyses. We show that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative traits including GBLUP and RR-BLUP, as well as Bayesian variable selection methods (e.g., those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, and genome-wide association studies. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient approach for collaborative genomic analyses while preserving data confidentiality.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"123 3 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality.\",\"authors\":\"Tianjing Zhao, Fangyi Wang, Richard Mott, Jack Dekkers, Hao Cheng\",\"doi\":\"10.1093/genetics/iyad210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To adhere to and capitalize on the benefits of the FAIR (Findable, Accessible, Interoperable and Reusable) principles in agricultural genome-to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in research and industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy concerns. Thus there is a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the outcomes of certain statistical analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for single-marker regression in genome-wide association studies using linear mixed models with Gaussian errors. This methodology permits frequentist likelihood-based parameter estimation and inference. In this paper, we extend HEGP to broader applications in genome-to-phenome analyses. We show that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative traits including GBLUP and RR-BLUP, as well as Bayesian variable selection methods (e.g., those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, and genome-wide association studies. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient approach for collaborative genomic analyses while preserving data confidentiality.\",\"PeriodicalId\":12706,\"journal\":{\"name\":\"Genetics\",\"volume\":\"123 3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyad210\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyad210","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality.
To adhere to and capitalize on the benefits of the FAIR (Findable, Accessible, Interoperable and Reusable) principles in agricultural genome-to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in research and industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy concerns. Thus there is a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the outcomes of certain statistical analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for single-marker regression in genome-wide association studies using linear mixed models with Gaussian errors. This methodology permits frequentist likelihood-based parameter estimation and inference. In this paper, we extend HEGP to broader applications in genome-to-phenome analyses. We show that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative traits including GBLUP and RR-BLUP, as well as Bayesian variable selection methods (e.g., those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, and genome-wide association studies. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient approach for collaborative genomic analyses while preserving data confidentiality.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.