{"title":"用于无创修复治疗的高粘度玻璃离子粘结剂的有机抗菌改性:综述","authors":"Damodar Hegde, Baranya Shrikrishna Suprabha, Arathi Rao","doi":"10.1016/j.jdsr.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.</p></div>","PeriodicalId":51334,"journal":{"name":"Japanese Dental Science Review","volume":"60 ","pages":"Pages 22-31"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S188276162300042X/pdfft?md5=a254c72246f0faeab6d1aeca51bd24d3&pid=1-s2.0-S188276162300042X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review\",\"authors\":\"Damodar Hegde, Baranya Shrikrishna Suprabha, Arathi Rao\",\"doi\":\"10.1016/j.jdsr.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.</p></div>\",\"PeriodicalId\":51334,\"journal\":{\"name\":\"Japanese Dental Science Review\",\"volume\":\"60 \",\"pages\":\"Pages 22-31\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S188276162300042X/pdfft?md5=a254c72246f0faeab6d1aeca51bd24d3&pid=1-s2.0-S188276162300042X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Dental Science Review\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S188276162300042X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Dental Science Review","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S188276162300042X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review
High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.
期刊介绍:
The Japanese Dental Science Review is published by the Japanese Association for Dental Science aiming to introduce the modern aspects of the dental basic and clinical sciences in Japan, and to share and discuss the update information with foreign researchers and dentists for further development of dentistry. In principle, papers are written and submitted on the invitation of one of the Editors, although the Editors would be glad to receive suggestions. Proposals for review articles should be sent by the authors to one of the Editors by e-mail. All submitted papers are subject to the peer- refereeing process.