Ilia Khait, Sauri Bhattacharyya, Abhisek Samanta, Assa Auerbach
{"title":"掺杂莫特绝缘体的霍尔反常现象","authors":"Ilia Khait, Sauri Bhattacharyya, Abhisek Samanta, Assa Auerbach","doi":"10.1038/s41535-023-00611-5","DOIUrl":null,"url":null,"abstract":"<p>The Hall coefficient of the strongly interacting square lattice Hubbard model is calculated for temperatures between the antiferromagnetic interaction and the Mott gap scales. The leading order thermodynamic formula is evaluated for all doping concentrations. Second-order corrections of the thermodynamic formula are calculated and found to be negligible. The Hall coefficient diverges toward the Mott insulator. Below 45% doping the Hall sign is reversed relative to band structure-based Boltzmann’s equation. These results elucidate the effects of the Mott insulator on the charge carriers and their non-Fermi liquid transport.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"29 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hall anomalies of the doped Mott insulator\",\"authors\":\"Ilia Khait, Sauri Bhattacharyya, Abhisek Samanta, Assa Auerbach\",\"doi\":\"10.1038/s41535-023-00611-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Hall coefficient of the strongly interacting square lattice Hubbard model is calculated for temperatures between the antiferromagnetic interaction and the Mott gap scales. The leading order thermodynamic formula is evaluated for all doping concentrations. Second-order corrections of the thermodynamic formula are calculated and found to be negligible. The Hall coefficient diverges toward the Mott insulator. Below 45% doping the Hall sign is reversed relative to band structure-based Boltzmann’s equation. These results elucidate the effects of the Mott insulator on the charge carriers and their non-Fermi liquid transport.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-023-00611-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-023-00611-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Hall coefficient of the strongly interacting square lattice Hubbard model is calculated for temperatures between the antiferromagnetic interaction and the Mott gap scales. The leading order thermodynamic formula is evaluated for all doping concentrations. Second-order corrections of the thermodynamic formula are calculated and found to be negligible. The Hall coefficient diverges toward the Mott insulator. Below 45% doping the Hall sign is reversed relative to band structure-based Boltzmann’s equation. These results elucidate the effects of the Mott insulator on the charge carriers and their non-Fermi liquid transport.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.