V. A. Dauvalter, S. S. Sandimirov, D. B. Denisov, M. V. Dauvalter, Z. I. Slukovskii
{"title":"受科拉半岛霞石-霓虹灯生产影响地区积雪的生态和地球化学评估","authors":"V. A. Dauvalter, S. S. Sandimirov, D. B. Denisov, M. V. Dauvalter, Z. I. Slukovskii","doi":"10.1134/S0016702923120029","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The chemical composition of the snow cover in the area of industrial development of the apatite–nepheline deposit is analyzed to estimate the ecological and geochemical environmental impact of the mining enterprise. It has been established that the snow of the studied area of the Khibiny is enriched in Cl<sup>–</sup> and Na<sup>+</sup> ions (on average 38 and 41 µeq/L), and relations between basic ions (Cl<sup>–</sup> > <span>\\({\\text{SO}}_{4}^{{2 - }}\\)</span> > <span>\\({\\text{HCO}}_{3}^{ - }\\)</span> and Na<sup>+</sup>> Ca<sup>2+</sup>> K<sup>+</sup> = Mg<sup>2+</sup>) and mineralization value (from 1.7 to 6.4 mg/L) are typical for precipitates in the coastal regions of the northern European Russia. The average content of total nitrogen and phosphorus in the snow of the impact zone is 495 and 26 μg/L, respectively, which is 3 and 5 times higher than in the background zone. This is explained by their influx into the atmosphere with dust emissions from the mining enterprise. The content of organic matter (COD<sub>Mn</sub> and TOC 5.5 and 5.8 mg/L) in the snow of the impact zone is about two times higher than in the snow of the background zone and in the water of the Khibiny water bodies. Probably, the elevated content of organic matter in the snow is associated with the supply of organic substances-reagents from the tailing dump, which are used to obtain apatite concentrate, as well as the intensive growth of unicellular green algae <i>Chlamydomonas nivalis</i> (Bauer) Wille under conditions of an increased content of nutrients and long daylight hours. The concentrations of a number of heavy metals (Zn, Mn, Cu, Cr, Pb, Cd) in the snow of the impact zone exceed their contents in the water of water body of the impact zone (13.4, 5.4, 3.8, 0.8, 0.65, 0.035 μg/L, respectively). These metals enter the snow as a part of dust emissions from the mine, and as polluted air masses from the industrial regions of Eurasia.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"61 12","pages":"1308 - 1322"},"PeriodicalIF":0.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecological and Geochemical Assessment of Snow Cover in the Area Affected by the Apatite–Nepheline Production of the Kola Peninsula\",\"authors\":\"V. A. Dauvalter, S. S. Sandimirov, D. B. Denisov, M. V. Dauvalter, Z. I. Slukovskii\",\"doi\":\"10.1134/S0016702923120029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—The chemical composition of the snow cover in the area of industrial development of the apatite–nepheline deposit is analyzed to estimate the ecological and geochemical environmental impact of the mining enterprise. It has been established that the snow of the studied area of the Khibiny is enriched in Cl<sup>–</sup> and Na<sup>+</sup> ions (on average 38 and 41 µeq/L), and relations between basic ions (Cl<sup>–</sup> > <span>\\\\({\\\\text{SO}}_{4}^{{2 - }}\\\\)</span> > <span>\\\\({\\\\text{HCO}}_{3}^{ - }\\\\)</span> and Na<sup>+</sup>> Ca<sup>2+</sup>> K<sup>+</sup> = Mg<sup>2+</sup>) and mineralization value (from 1.7 to 6.4 mg/L) are typical for precipitates in the coastal regions of the northern European Russia. The average content of total nitrogen and phosphorus in the snow of the impact zone is 495 and 26 μg/L, respectively, which is 3 and 5 times higher than in the background zone. This is explained by their influx into the atmosphere with dust emissions from the mining enterprise. The content of organic matter (COD<sub>Mn</sub> and TOC 5.5 and 5.8 mg/L) in the snow of the impact zone is about two times higher than in the snow of the background zone and in the water of the Khibiny water bodies. Probably, the elevated content of organic matter in the snow is associated with the supply of organic substances-reagents from the tailing dump, which are used to obtain apatite concentrate, as well as the intensive growth of unicellular green algae <i>Chlamydomonas nivalis</i> (Bauer) Wille under conditions of an increased content of nutrients and long daylight hours. The concentrations of a number of heavy metals (Zn, Mn, Cu, Cr, Pb, Cd) in the snow of the impact zone exceed their contents in the water of water body of the impact zone (13.4, 5.4, 3.8, 0.8, 0.65, 0.035 μg/L, respectively). These metals enter the snow as a part of dust emissions from the mine, and as polluted air masses from the industrial regions of Eurasia.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"61 12\",\"pages\":\"1308 - 1322\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702923120029\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702923120029","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Ecological and Geochemical Assessment of Snow Cover in the Area Affected by the Apatite–Nepheline Production of the Kola Peninsula
Abstract—The chemical composition of the snow cover in the area of industrial development of the apatite–nepheline deposit is analyzed to estimate the ecological and geochemical environmental impact of the mining enterprise. It has been established that the snow of the studied area of the Khibiny is enriched in Cl– and Na+ ions (on average 38 and 41 µeq/L), and relations between basic ions (Cl– > \({\text{SO}}_{4}^{{2 - }}\) > \({\text{HCO}}_{3}^{ - }\) and Na+> Ca2+> K+ = Mg2+) and mineralization value (from 1.7 to 6.4 mg/L) are typical for precipitates in the coastal regions of the northern European Russia. The average content of total nitrogen and phosphorus in the snow of the impact zone is 495 and 26 μg/L, respectively, which is 3 and 5 times higher than in the background zone. This is explained by their influx into the atmosphere with dust emissions from the mining enterprise. The content of organic matter (CODMn and TOC 5.5 and 5.8 mg/L) in the snow of the impact zone is about two times higher than in the snow of the background zone and in the water of the Khibiny water bodies. Probably, the elevated content of organic matter in the snow is associated with the supply of organic substances-reagents from the tailing dump, which are used to obtain apatite concentrate, as well as the intensive growth of unicellular green algae Chlamydomonas nivalis (Bauer) Wille under conditions of an increased content of nutrients and long daylight hours. The concentrations of a number of heavy metals (Zn, Mn, Cu, Cr, Pb, Cd) in the snow of the impact zone exceed their contents in the water of water body of the impact zone (13.4, 5.4, 3.8, 0.8, 0.65, 0.035 μg/L, respectively). These metals enter the snow as a part of dust emissions from the mine, and as polluted air masses from the industrial regions of Eurasia.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.