奥迪金查碱性碳酸盐岩块(西伯利亚梅查-科推省)碱性碳酸盐岩异质岩浆源的钍钕同位素证据

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemistry International Pub Date : 2023-12-18 DOI:10.1134/S0016702923120030
Y. A. Kostitsyn, A. R. Tskhovrebova, I. T. Rass, M. O. Anosova
{"title":"奥迪金查碱性碳酸盐岩块(西伯利亚梅查-科推省)碱性碳酸盐岩异质岩浆源的钍钕同位素证据","authors":"Y. A. Kostitsyn,&nbsp;A. R. Tskhovrebova,&nbsp;I. T. Rass,&nbsp;M. O. Anosova","doi":"10.1134/S0016702923120030","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the igneous rocks composing the Odikhincha massif. The massif is typical ring alkaline–ultrabasic massif with carbonatites, second largest in the Maimecha-Kotui province. The Sr-Nd isotopic values of the traps of the Arydzhang Formation and the host dolomites were also determined for comparison. The Rb–Sr isotope system of phlogopite and calcite from the Od-16-19 carbonatite of the Odikhincha massif is disturbed; the obtained age on the mineral isochrone (245 ± 3 Ma) is close to the time of formation of the Siberian traps and rocks of the ultrabasic–alkaline Maimecha-Kotui complex, but the large scatter of analytical points (MSWD = 22) does not allow this date to be considered as reliable. The disturbance of the isotope system is probably related to the fact that the strontium isotope ratio in the fluid was not constant during autometasomatic phlogopitization of carbonatite. The U–Pb isotopic system of titanite and perovskite from the same carbonatite sample Od-16-19 also appeared to be disturbed, since data points formed discordia. The U–Pb age obtained for titanite and perovskite are 244 ± 5 Ma (MSWD = 1.8) and 247 ± 18 Ma (MSWD = 4), respectively. Apparently, the age values provided by the two isotopic systems (245 ± 3 Ma by Rb–Sr and 247 ± 18 and 244 ± 5 Ma by U–Pb) are consistent with each other and reflect the time of metasomatic processes, i.e., phlogopitization and iolitization. Rb–Sr and Sm–Nd isotope data for ultrabasic–alkaline intrusive rocks with carbonatites of the Odikhincha massif and volcanics of the Arydzhang Formation indicate an enriched, relative to the composition of the convecting mantle, isotopically heterogeneous source of their parent melts. This source could be a combination of ultrabasic mantle rocks and rocks of basic composition (basites). The latter played the role of an enriched component. No signs of contamination of the melts with the host sedimentary rocks in situ were found, however, variations of Sr and Nd isotopic ratios in the rocks of the Odikhincha massif may indicate that during the introduction of deep magmas their interaction and substance exchange with the surrounding rocks of the lithosphere continued up to complete solidification of the melts, as indicated by the nature of local isotopic heterogeneity within the Odikhincha intrusion.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"61 12","pages":"1221 - 1240"},"PeriodicalIF":0.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702923120030.pdf","citationCount":"0","resultStr":"{\"title\":\"Sr–Nd Isotopic Evidence of a Heterogeneous Magmatic Source of Alkaline–Carbonatite Rocks of the Odikhincha Alkaline–Carbonatite Massif (Maimecha-Kotui Province, Siberia)\",\"authors\":\"Y. A. Kostitsyn,&nbsp;A. R. Tskhovrebova,&nbsp;I. T. Rass,&nbsp;M. O. Anosova\",\"doi\":\"10.1134/S0016702923120030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the igneous rocks composing the Odikhincha massif. The massif is typical ring alkaline–ultrabasic massif with carbonatites, second largest in the Maimecha-Kotui province. The Sr-Nd isotopic values of the traps of the Arydzhang Formation and the host dolomites were also determined for comparison. The Rb–Sr isotope system of phlogopite and calcite from the Od-16-19 carbonatite of the Odikhincha massif is disturbed; the obtained age on the mineral isochrone (245 ± 3 Ma) is close to the time of formation of the Siberian traps and rocks of the ultrabasic–alkaline Maimecha-Kotui complex, but the large scatter of analytical points (MSWD = 22) does not allow this date to be considered as reliable. The disturbance of the isotope system is probably related to the fact that the strontium isotope ratio in the fluid was not constant during autometasomatic phlogopitization of carbonatite. The U–Pb isotopic system of titanite and perovskite from the same carbonatite sample Od-16-19 also appeared to be disturbed, since data points formed discordia. The U–Pb age obtained for titanite and perovskite are 244 ± 5 Ma (MSWD = 1.8) and 247 ± 18 Ma (MSWD = 4), respectively. Apparently, the age values provided by the two isotopic systems (245 ± 3 Ma by Rb–Sr and 247 ± 18 and 244 ± 5 Ma by U–Pb) are consistent with each other and reflect the time of metasomatic processes, i.e., phlogopitization and iolitization. Rb–Sr and Sm–Nd isotope data for ultrabasic–alkaline intrusive rocks with carbonatites of the Odikhincha massif and volcanics of the Arydzhang Formation indicate an enriched, relative to the composition of the convecting mantle, isotopically heterogeneous source of their parent melts. This source could be a combination of ultrabasic mantle rocks and rocks of basic composition (basites). The latter played the role of an enriched component. No signs of contamination of the melts with the host sedimentary rocks in situ were found, however, variations of Sr and Nd isotopic ratios in the rocks of the Odikhincha massif may indicate that during the introduction of deep magmas their interaction and substance exchange with the surrounding rocks of the lithosphere continued up to complete solidification of the melts, as indicated by the nature of local isotopic heterogeneity within the Odikhincha intrusion.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"61 12\",\"pages\":\"1221 - 1240\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0016702923120030.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702923120030\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702923120030","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究的重点是构成奥迪金查地块的火成岩。该地块是典型的环状碱性-超基性地块,含有碳酸盐岩,是麦盖提-科吐省第二大地块。为了进行比较,还测定了阿日德章地层捕虏岩和寄主白云岩的 Sr-Nd 同位素值。奥迪金查地块奥德-16-19碳酸盐岩中的辉绿岩和方解石的铷锶同位素系统受到干扰;矿物等时线上获得的年龄(245 ± 3 Ma)接近西伯利亚捕虏岩和超基性-碱性麦饭石-科吐复合岩的形成时间,但分析点的巨大分散性(MSWD = 22)使这一日期不能被认为是可靠的。同位素系统的紊乱可能与碳酸盐岩自气相辉绿岩化过程中流体中的锶同位素比值不稳定有关。来自同一碳酸盐岩样本 Od-16-19 的榍石和透辉石的 U-Pb 同位素系统似乎也受到了干扰,因为数据点形成了不协调。榍石和透辉石的 U-Pb 年龄分别为 244 ± 5 Ma(MSWD = 1.8)和 247 ± 18 Ma(MSWD = 4)。显然,两个同位素系统提供的年龄值(Rb-Sr为245±3 Ma,U-Pb为247±18和244±5 Ma)是一致的,反映了元成岩过程(即辉绿岩化和鲕粒岩化)的时间。奥迪金查地块的超基性-碱性侵入岩和碳酸盐岩以及阿利璋地层火山岩的铷-锶和钐-钕同位素数据表明,相对于对流地幔的成分,其母体熔体的同位素异质源是富集的。这种来源可能是超基性地幔岩和基本成分岩石(基性岩)的组合。后者起着富集成分的作用。然而,奥迪金查地块岩石中锶和钕同位素比率的变化可能表明,在引入深部岩浆期间,它们与岩石圈周围岩石的相互作用和物质交换一直持续到岩浆完全凝固,奥迪金查侵入体内部局部同位素异质性的性质也表明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sr–Nd Isotopic Evidence of a Heterogeneous Magmatic Source of Alkaline–Carbonatite Rocks of the Odikhincha Alkaline–Carbonatite Massif (Maimecha-Kotui Province, Siberia)

This study focuses on the igneous rocks composing the Odikhincha massif. The massif is typical ring alkaline–ultrabasic massif with carbonatites, second largest in the Maimecha-Kotui province. The Sr-Nd isotopic values of the traps of the Arydzhang Formation and the host dolomites were also determined for comparison. The Rb–Sr isotope system of phlogopite and calcite from the Od-16-19 carbonatite of the Odikhincha massif is disturbed; the obtained age on the mineral isochrone (245 ± 3 Ma) is close to the time of formation of the Siberian traps and rocks of the ultrabasic–alkaline Maimecha-Kotui complex, but the large scatter of analytical points (MSWD = 22) does not allow this date to be considered as reliable. The disturbance of the isotope system is probably related to the fact that the strontium isotope ratio in the fluid was not constant during autometasomatic phlogopitization of carbonatite. The U–Pb isotopic system of titanite and perovskite from the same carbonatite sample Od-16-19 also appeared to be disturbed, since data points formed discordia. The U–Pb age obtained for titanite and perovskite are 244 ± 5 Ma (MSWD = 1.8) and 247 ± 18 Ma (MSWD = 4), respectively. Apparently, the age values provided by the two isotopic systems (245 ± 3 Ma by Rb–Sr and 247 ± 18 and 244 ± 5 Ma by U–Pb) are consistent with each other and reflect the time of metasomatic processes, i.e., phlogopitization and iolitization. Rb–Sr and Sm–Nd isotope data for ultrabasic–alkaline intrusive rocks with carbonatites of the Odikhincha massif and volcanics of the Arydzhang Formation indicate an enriched, relative to the composition of the convecting mantle, isotopically heterogeneous source of their parent melts. This source could be a combination of ultrabasic mantle rocks and rocks of basic composition (basites). The latter played the role of an enriched component. No signs of contamination of the melts with the host sedimentary rocks in situ were found, however, variations of Sr and Nd isotopic ratios in the rocks of the Odikhincha massif may indicate that during the introduction of deep magmas their interaction and substance exchange with the surrounding rocks of the lithosphere continued up to complete solidification of the melts, as indicated by the nature of local isotopic heterogeneity within the Odikhincha intrusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Gas Composition of Fluids That Formed Ore Deposits over Geological Time: from the Archean through Cenozoic Kichany Structure of the Archean Tiksheozero Greenstone Belt of the Fennoscandian: Evidence from New Geochemical and Geochronological Data Orogenic Gold Deposits of Northern Transbaikalia, Russia: Geology, Age, Sources, and Genesis Dissolution of Ta–Nb and Nb Minerals in Granitoid Melts Trends in Some Geochemical Parameters of Fine-Grained Clastic Rocks of Lower Riphean Sedimentary Sequences in the Northeastern and Central Parts of the Bashkirian Meganticlinorium, Southern Urals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1