骨骼 III 级表型:动物模型与人类遗传学之间的联系:范围综述

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY Journal of experimental zoology. Part B, Molecular and developmental evolution Pub Date : 2023-12-18 DOI:10.1002/jez.b.23230
Alexandra Dehesa-Santos, Maria Cristina Faria-Teixeira, Alejandro Iglesias-Linares
{"title":"骨骼 III 级表型:动物模型与人类遗传学之间的联系:范围综述","authors":"Alexandra Dehesa-Santos,&nbsp;Maria Cristina Faria-Teixeira,&nbsp;Alejandro Iglesias-Linares","doi":"10.1002/jez.b.23230","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in <i>the Danio rerio</i>, <i>Dicentrarchus labrax</i>, and <i>Equus africanus asinus</i> models; and as maxillary deficiency in <i>the Felis silvestris catus</i>, <i>Canis familiaris</i>, <i>Salmo trutta</i>, and <i>Mus musculus</i> models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 1","pages":"21-44"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23230","citationCount":"0","resultStr":"{\"title\":\"Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review\",\"authors\":\"Alexandra Dehesa-Santos,&nbsp;Maria Cristina Faria-Teixeira,&nbsp;Alejandro Iglesias-Linares\",\"doi\":\"10.1002/jez.b.23230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in <i>the Danio rerio</i>, <i>Dicentrarchus labrax</i>, and <i>Equus africanus asinus</i> models; and as maxillary deficiency in <i>the Felis silvestris catus</i>, <i>Canis familiaris</i>, <i>Salmo trutta</i>, and <i>Mus musculus</i> models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 1\",\"pages\":\"21-44\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23230\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23230\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23230","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在从动物研究中找出证据,研究导致骨骼三级(SCIII)错颌畸形表型的上下颌骨差异的遗传变异。按照 JBI 的《证据综合手册》和用于范围界定综述的 PRISMA 扩展标准,我们提出了一个参与者、概念和背景问题,并在 PubMed、Scopus、WOS、Scielo、Open Gray 和 Mednar 数据库中进行了系统检索。在已确定的 779 项研究中,有 13 项符合筛选标准,并纳入了数据提取。SCIII错颌畸形表型在Danio rerio、Dicentrarchus labrax和Equus africanus asinus模型中被描述为下颌前突;在Felis silvestris catus、Canis familiaris、Salmo trutta和Mus musculus模型中被描述为上颌缺损。已确定的遗传变异突显了 BMP 和 TGF-β 信号传导的重要性。它们的调节途径和遗传相互作用将它们与细胞骨调节事件联系起来,特别是出生后颅骨滑膜的骨化调节。总之,在动物模型中发现了 20 个与骨骼 SCIII 畸形表型相关的遗传变异。它们之间的相互作用和调控途径证实了这些变体在骨骼生长、分化事件和出生后颅骨突触骨化调控中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review

This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in the Danio rerio, Dicentrarchus labrax, and Equus africanus asinus models; and as maxillary deficiency in the Felis silvestris catus, Canis familiaris, Salmo trutta, and Mus musculus models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
期刊最新文献
Issue Information From Egg to Adult: A Developmental Table of the Ant Monomorium pharaonis The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology Issue Information In the Spotlight—Postdoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1