{"title":"通过嵌入超薄绝缘膜的分子线控制电子转移,驱动氧化还原催化反应","authors":"Heinz Frei","doi":"10.1007/s11120-023-01061-7","DOIUrl":null,"url":null,"abstract":"<p>Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis\",\"authors\":\"Heinz Frei\",\"doi\":\"10.1007/s11120-023-01061-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-023-01061-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-023-01061-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis
Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.
期刊介绍:
Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.