凹槽 "结构微弧氧化钛的细胞粘附、成骨和血管生成研究

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2023-12-18 DOI:10.1016/j.apsadv.2023.100552
Yifan Fei , Wenyi Yang , Zhaoyang Guo , Haishui Sun , Fan Yang , Jingzhou Hu
{"title":"凹槽 \"结构微弧氧化钛的细胞粘附、成骨和血管生成研究","authors":"Yifan Fei ,&nbsp;Wenyi Yang ,&nbsp;Zhaoyang Guo ,&nbsp;Haishui Sun ,&nbsp;Fan Yang ,&nbsp;Jingzhou Hu","doi":"10.1016/j.apsadv.2023.100552","DOIUrl":null,"url":null,"abstract":"<div><p>The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (<em>P</em> &lt; 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"19 ","pages":"Article 100552"},"PeriodicalIF":7.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001861/pdfft?md5=fe41d9207b7a640e20d9e9261a93fd6b&pid=1-s2.0-S2666523923001861-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium\",\"authors\":\"Yifan Fei ,&nbsp;Wenyi Yang ,&nbsp;Zhaoyang Guo ,&nbsp;Haishui Sun ,&nbsp;Fan Yang ,&nbsp;Jingzhou Hu\",\"doi\":\"10.1016/j.apsadv.2023.100552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (<em>P</em> &lt; 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"19 \",\"pages\":\"Article 100552\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001861/pdfft?md5=fe41d9207b7a640e20d9e9261a93fd6b&pid=1-s2.0-S2666523923001861-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以钛合金为基础的牙科植入修复体因其极具吸引力的特性而广受欢迎。目前,有关钛材料表面改性的研究主要集中在各种金属离子的表面整合、不同药物或其他材料的加入等方面。我们只需调整微弧氧化的工艺参数,就能在钛芯片上形成 "凹槽 "结构。扫描电子显微镜(SEM)观察发现,骨髓干细胞(BMSCs)明显沿着 "沟槽 "伸长。免疫荧光结果表明,"沟槽 "结构组的骨钙素(OCN)和 CD31 表达量增加。此外,"沟槽 "结构组还提高了材料表面成骨基因(碱性磷酸酶,ALP;骨钙素,OCN)和血管生成基因(CD31、血管内皮生长因子,VEGF;血管生成素-2,ANG2;成纤维细胞生长因子,FGF)的表达量(P <0.05)。这项研究表明,"凹槽 "结构增强了材料表面的早期细胞粘附,改善了钛表面的成骨和血管分化,从而为增强植入物的初期稳定性提供了潜在的研究意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium

The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (P < 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
3D-network polymer supported bimetallic γ-Fe2O3/Cu nanoparticles: As a new magnetic nanocomposite for the synthesis of new series functionalized benzodiazepines Interface dipole evolution from the hybrid coupling between nitrogen-doped carbon quantum dots and polyethylenimine featuring the electron transport thin layer at Al/Si interfaces PLLA honeycombs activated by plasma and high-energy excimer laser for stem cell support Steering catalytic property and reactivity of Ni/SiO2 by functionalized silica for dry reforming of methane Submicron periodic structures in metal oxide coating via laser ablation and thermal oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1