Hermes Pérez-Hernández, Andrea Yakelín Pérez-Moreno, Alonso Méndez-López, Fabián Fernández-Luqueño
{"title":"氧化锌纳米粒子在向日葵(Helianthus annuus L.)种植的砷和铅污染土壤植物修复过程中的影响","authors":"Hermes Pérez-Hernández, Andrea Yakelín Pérez-Moreno, Alonso Méndez-López, Fabián Fernández-Luqueño","doi":"10.1007/s41742-023-00556-4","DOIUrl":null,"url":null,"abstract":"<p>Urbanization and industrialization have caused the production of pollutants in the soil, water, and air systems, negatively influencing plants, animals, humans, and the ecosystem. Heavy metals, such as arsenic (As), lead (Pb), cobalt (Co), chromium (Cr), mercury (Hg), and nickel (Ni), affect the development of organisms. In this study, as a novel alternative, the performance of zinc oxide nanoparticles (ZnO NPs) in sunflower plant growth (<i>Helianthus annuus</i> L.) and the decontamination of soils with As and Pb was investigated. For this purpose, in natural soil contaminated with As (0.02 mg kg of dry soil) and Pb (0.2 mg/kg of dry soil), sunflower plants were allowed to grow in pots for 25, 35, and 45 days after emergence. Morphological parameters were measured for the plants. The stems, leaves, and roots were dried (80 °C), ground, and finally, mineral analysis was performed by plasma atomic emission spectrometry (ICP). ZnO NPs were applied to the soil at two concentrations (0.3 and 0.6 mg/kg) and the control. ZnO NPs application resulted in plant growth and root length 25 days after emergence (DAE). The interaction between ZnO NPs and metals significantly negatively affected the variable root length. The roots, stems, and leaves accumulated metals at 25 and 45 DAE. Bioconcentration (BCF) and translocation (TF) factors were higher in Zn at 45 DAE. The phytoextraction by <i>H. annuus</i> assisted with ZnO NPs helps remediate polluted soils, potentiating the plant's hyperaccumulation characteristics. The results of this experiment offer basic information on the interaction of ZnO NPs in the phytoremediation process of soil contaminated with heavy metals. However, it is crucial to know the potential of NPs in soils with higher concentrations of contaminants in the soil, which we consider one of the limitations of this work, using low concentrations of heavy metals. Therefore, more research is required to corroborate the effectiveness of ZnO NPs in soils contaminated with Pb and Zn during the phytoremediation process with sunflower plants.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ZnO Nanoparticles During the Process of Phytoremediation of Soil Contaminated with As and Pb Cultivated with Sunflower (Helianthus annuus L.)\",\"authors\":\"Hermes Pérez-Hernández, Andrea Yakelín Pérez-Moreno, Alonso Méndez-López, Fabián Fernández-Luqueño\",\"doi\":\"10.1007/s41742-023-00556-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urbanization and industrialization have caused the production of pollutants in the soil, water, and air systems, negatively influencing plants, animals, humans, and the ecosystem. Heavy metals, such as arsenic (As), lead (Pb), cobalt (Co), chromium (Cr), mercury (Hg), and nickel (Ni), affect the development of organisms. In this study, as a novel alternative, the performance of zinc oxide nanoparticles (ZnO NPs) in sunflower plant growth (<i>Helianthus annuus</i> L.) and the decontamination of soils with As and Pb was investigated. For this purpose, in natural soil contaminated with As (0.02 mg kg of dry soil) and Pb (0.2 mg/kg of dry soil), sunflower plants were allowed to grow in pots for 25, 35, and 45 days after emergence. Morphological parameters were measured for the plants. The stems, leaves, and roots were dried (80 °C), ground, and finally, mineral analysis was performed by plasma atomic emission spectrometry (ICP). ZnO NPs were applied to the soil at two concentrations (0.3 and 0.6 mg/kg) and the control. ZnO NPs application resulted in plant growth and root length 25 days after emergence (DAE). The interaction between ZnO NPs and metals significantly negatively affected the variable root length. The roots, stems, and leaves accumulated metals at 25 and 45 DAE. Bioconcentration (BCF) and translocation (TF) factors were higher in Zn at 45 DAE. The phytoextraction by <i>H. annuus</i> assisted with ZnO NPs helps remediate polluted soils, potentiating the plant's hyperaccumulation characteristics. The results of this experiment offer basic information on the interaction of ZnO NPs in the phytoremediation process of soil contaminated with heavy metals. However, it is crucial to know the potential of NPs in soils with higher concentrations of contaminants in the soil, which we consider one of the limitations of this work, using low concentrations of heavy metals. Therefore, more research is required to corroborate the effectiveness of ZnO NPs in soils contaminated with Pb and Zn during the phytoremediation process with sunflower plants.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":14121,\"journal\":{\"name\":\"International Journal of Environmental Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s41742-023-00556-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-023-00556-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of ZnO Nanoparticles During the Process of Phytoremediation of Soil Contaminated with As and Pb Cultivated with Sunflower (Helianthus annuus L.)
Urbanization and industrialization have caused the production of pollutants in the soil, water, and air systems, negatively influencing plants, animals, humans, and the ecosystem. Heavy metals, such as arsenic (As), lead (Pb), cobalt (Co), chromium (Cr), mercury (Hg), and nickel (Ni), affect the development of organisms. In this study, as a novel alternative, the performance of zinc oxide nanoparticles (ZnO NPs) in sunflower plant growth (Helianthus annuus L.) and the decontamination of soils with As and Pb was investigated. For this purpose, in natural soil contaminated with As (0.02 mg kg of dry soil) and Pb (0.2 mg/kg of dry soil), sunflower plants were allowed to grow in pots for 25, 35, and 45 days after emergence. Morphological parameters were measured for the plants. The stems, leaves, and roots were dried (80 °C), ground, and finally, mineral analysis was performed by plasma atomic emission spectrometry (ICP). ZnO NPs were applied to the soil at two concentrations (0.3 and 0.6 mg/kg) and the control. ZnO NPs application resulted in plant growth and root length 25 days after emergence (DAE). The interaction between ZnO NPs and metals significantly negatively affected the variable root length. The roots, stems, and leaves accumulated metals at 25 and 45 DAE. Bioconcentration (BCF) and translocation (TF) factors were higher in Zn at 45 DAE. The phytoextraction by H. annuus assisted with ZnO NPs helps remediate polluted soils, potentiating the plant's hyperaccumulation characteristics. The results of this experiment offer basic information on the interaction of ZnO NPs in the phytoremediation process of soil contaminated with heavy metals. However, it is crucial to know the potential of NPs in soils with higher concentrations of contaminants in the soil, which we consider one of the limitations of this work, using low concentrations of heavy metals. Therefore, more research is required to corroborate the effectiveness of ZnO NPs in soils contaminated with Pb and Zn during the phytoremediation process with sunflower plants.
期刊介绍:
International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.