{"title":"面积密度超过 2 Tb/in2 的硬盘驱动器读取通道设计取舍","authors":"Tertulien Ndjountche","doi":"10.1007/s10470-023-02198-0","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the ever-increasing recording densities, disk-drive read channels are required to operate efficiently at high speeds. With the use of conventional design techniques, a compromise should be made between speed, power, latency and chip area. Improvements of head and media technology and the move from conventional single-track magnetic recording to two-dimensional magnetic recording help increase the areal density of magnetic data storage. Especially for the read channel, a performance gain is achieved by using more powerful coding and signal processing algorithms to mitigate inter-symbol and inter-track interferences. Timing recovery is essential to extract timing information in order to sample read data without a significant bit error, while calibration is performed to cancel the effects of gain and dc offset errors. Speed improvement and power consumption diminution are achieved in the resulting read channel system by using high-speed and power-efficient building blocks based on improved algorithms and pipeline stages to shorten critical paths.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"119 3","pages":"511 - 519"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard-disk drive read-channel design trade-offs for areal densities beyond 2 Tb/in2\",\"authors\":\"Tertulien Ndjountche\",\"doi\":\"10.1007/s10470-023-02198-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the ever-increasing recording densities, disk-drive read channels are required to operate efficiently at high speeds. With the use of conventional design techniques, a compromise should be made between speed, power, latency and chip area. Improvements of head and media technology and the move from conventional single-track magnetic recording to two-dimensional magnetic recording help increase the areal density of magnetic data storage. Especially for the read channel, a performance gain is achieved by using more powerful coding and signal processing algorithms to mitigate inter-symbol and inter-track interferences. Timing recovery is essential to extract timing information in order to sample read data without a significant bit error, while calibration is performed to cancel the effects of gain and dc offset errors. Speed improvement and power consumption diminution are achieved in the resulting read channel system by using high-speed and power-efficient building blocks based on improved algorithms and pipeline stages to shorten critical paths.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"119 3\",\"pages\":\"511 - 519\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-023-02198-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02198-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Due to the ever-increasing recording densities, disk-drive read channels are required to operate efficiently at high speeds. With the use of conventional design techniques, a compromise should be made between speed, power, latency and chip area. Improvements of head and media technology and the move from conventional single-track magnetic recording to two-dimensional magnetic recording help increase the areal density of magnetic data storage. Especially for the read channel, a performance gain is achieved by using more powerful coding and signal processing algorithms to mitigate inter-symbol and inter-track interferences. Timing recovery is essential to extract timing information in order to sample read data without a significant bit error, while calibration is performed to cancel the effects of gain and dc offset errors. Speed improvement and power consumption diminution are achieved in the resulting read channel system by using high-speed and power-efficient building blocks based on improved algorithms and pipeline stages to shorten critical paths.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.