{"title":"用简单方程法计算某些四阶分数水波方程的里卡提方程所产生的新波浪特性","authors":"Weerachai Thadee, Sirasrete Phoosree","doi":"10.7566/jpsj.93.014002","DOIUrl":null,"url":null,"abstract":"More real situations have been rendered as nonlinear fractional partial differential equations (nfPDEs), which is why the seeking of the exact traveling wave solutions and studying the wave behavior of these equations are very important in many fields of mathematical physics. The nonlinear space-time fractional Ablowitz–Kaup–Newell–Segur (AKNS) equation and the nonlinear space-time fractional Estevez–Mansfield–Clarkson (EMC) equation presented the movement of waves in shallow water. Solving these equations required the Jumarie’s Riemann–Liouville derivative to transform nfPDEs to nonlinear ordinary differential equations (nODEs) and the collaboration of the simple equation (SE) method with Riccati equation. The new results of these equations are displayed in hyperbolic tangent forms and tangent forms. The wave behaviors, kink and periodic waves are shown in 2-D, 3-D, and contour graphs. Moreover, the solutions analysis also shows that these solutions have a structure that is not only more appropriate but also simpler.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"44 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Wave Behaviors Generated by Simple Equation Method with Riccati Equation of Some Fourth-Order Fractional Water Wave Equations\",\"authors\":\"Weerachai Thadee, Sirasrete Phoosree\",\"doi\":\"10.7566/jpsj.93.014002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More real situations have been rendered as nonlinear fractional partial differential equations (nfPDEs), which is why the seeking of the exact traveling wave solutions and studying the wave behavior of these equations are very important in many fields of mathematical physics. The nonlinear space-time fractional Ablowitz–Kaup–Newell–Segur (AKNS) equation and the nonlinear space-time fractional Estevez–Mansfield–Clarkson (EMC) equation presented the movement of waves in shallow water. Solving these equations required the Jumarie’s Riemann–Liouville derivative to transform nfPDEs to nonlinear ordinary differential equations (nODEs) and the collaboration of the simple equation (SE) method with Riccati equation. The new results of these equations are displayed in hyperbolic tangent forms and tangent forms. The wave behaviors, kink and periodic waves are shown in 2-D, 3-D, and contour graphs. Moreover, the solutions analysis also shows that these solutions have a structure that is not only more appropriate but also simpler.\",\"PeriodicalId\":17304,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.014002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.014002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
New Wave Behaviors Generated by Simple Equation Method with Riccati Equation of Some Fourth-Order Fractional Water Wave Equations
More real situations have been rendered as nonlinear fractional partial differential equations (nfPDEs), which is why the seeking of the exact traveling wave solutions and studying the wave behavior of these equations are very important in many fields of mathematical physics. The nonlinear space-time fractional Ablowitz–Kaup–Newell–Segur (AKNS) equation and the nonlinear space-time fractional Estevez–Mansfield–Clarkson (EMC) equation presented the movement of waves in shallow water. Solving these equations required the Jumarie’s Riemann–Liouville derivative to transform nfPDEs to nonlinear ordinary differential equations (nODEs) and the collaboration of the simple equation (SE) method with Riccati equation. The new results of these equations are displayed in hyperbolic tangent forms and tangent forms. The wave behaviors, kink and periodic waves are shown in 2-D, 3-D, and contour graphs. Moreover, the solutions analysis also shows that these solutions have a structure that is not only more appropriate but also simpler.
期刊介绍:
The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below.
Subjects Covered
JPSJ covers all the fields of physics including (but not restricted to)
Elementary particles and fields
Nuclear physics
Atomic and Molecular Physics
Fluid Dynamics
Plasma physics
Physics of Condensed Matter
Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials
Physics of Nanoscale Materials
Optics and Quantum Electronics
Physics of Complex Systems
Mathematical Physics
Chemical physics
Biophysics
Geophysics
Astrophysics.