Zhe Chen , Dong Zhang , Chunxiang Liu , Hui Wang , Xinyao Jin , Fengwen Yang , Junhua Zhang
{"title":"基于深度学习的中医综合症诊断预测模型","authors":"Zhe Chen , Dong Zhang , Chunxiang Liu , Hui Wang , Xinyao Jin , Fengwen Yang , Junhua Zhang","doi":"10.1016/j.imr.2023.101019","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>With the development of traditional Chinese medicine (TCM) syndrome knowledge accumulation and artificial intelligence (AI), this study proposes a holistic TCM syndrome differentiation model for the classification prediction of multiple TCM syndromes based on deep learning and accelerates the construction of modern foundational TCM equipment.</p></div><div><h3>Methods</h3><p>We searched publicly available TCM guidelines and textbooks for expert knowledge and validated these sources using ten-fold cross-validation. Based on the BERT and CNN models, with the classification constraints from TCM holistic syndrome differentiation, the TCM-BERT-CNN model was constructed, which completes the end-to-end TCM holistic syndrome text classification task through symptom input and syndrome output. We assessed the performance of the model using precision, recall, and F1 scores as evaluation metrics.</p></div><div><h3>Results</h3><p>The TCM-BERT-CNN model had a higher precision (0.926), recall (0.9238), and F1 score (0.9247) than the BERT, TextCNN, LSTM RNN, and LSTM ATTENTION models and achieved superior results in model performance and predictive classification of most TCM syndromes. Symptom feature visualization demonstrated that the TCM-BERT-CNN model can effectively identify the correlation and characteristics of symptoms in different syndromes with a strong correlation, which conforms to the diagnostic characteristics of TCM syndromes.</p></div><div><h3>Conclusions</h3><p>The TCM-BERT-CNN model proposed in this study is in accordance with the TCM diagnostic characteristics of holistic syndrome differentiation and can effectively complete diagnostic prediction tasks for various TCM syndromes. The results of this study provide new insights into the development of deep learning models for holistic syndrome differentiation in TCM.</p></div>","PeriodicalId":13644,"journal":{"name":"Integrative Medicine Research","volume":"13 1","pages":"Article 101019"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213422023000987/pdfft?md5=99cd836599379ae327efed4c3301b406&pid=1-s2.0-S2213422023000987-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Traditional Chinese medicine diagnostic prediction model for holistic syndrome differentiation based on deep learning\",\"authors\":\"Zhe Chen , Dong Zhang , Chunxiang Liu , Hui Wang , Xinyao Jin , Fengwen Yang , Junhua Zhang\",\"doi\":\"10.1016/j.imr.2023.101019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>With the development of traditional Chinese medicine (TCM) syndrome knowledge accumulation and artificial intelligence (AI), this study proposes a holistic TCM syndrome differentiation model for the classification prediction of multiple TCM syndromes based on deep learning and accelerates the construction of modern foundational TCM equipment.</p></div><div><h3>Methods</h3><p>We searched publicly available TCM guidelines and textbooks for expert knowledge and validated these sources using ten-fold cross-validation. Based on the BERT and CNN models, with the classification constraints from TCM holistic syndrome differentiation, the TCM-BERT-CNN model was constructed, which completes the end-to-end TCM holistic syndrome text classification task through symptom input and syndrome output. We assessed the performance of the model using precision, recall, and F1 scores as evaluation metrics.</p></div><div><h3>Results</h3><p>The TCM-BERT-CNN model had a higher precision (0.926), recall (0.9238), and F1 score (0.9247) than the BERT, TextCNN, LSTM RNN, and LSTM ATTENTION models and achieved superior results in model performance and predictive classification of most TCM syndromes. Symptom feature visualization demonstrated that the TCM-BERT-CNN model can effectively identify the correlation and characteristics of symptoms in different syndromes with a strong correlation, which conforms to the diagnostic characteristics of TCM syndromes.</p></div><div><h3>Conclusions</h3><p>The TCM-BERT-CNN model proposed in this study is in accordance with the TCM diagnostic characteristics of holistic syndrome differentiation and can effectively complete diagnostic prediction tasks for various TCM syndromes. The results of this study provide new insights into the development of deep learning models for holistic syndrome differentiation in TCM.</p></div>\",\"PeriodicalId\":13644,\"journal\":{\"name\":\"Integrative Medicine Research\",\"volume\":\"13 1\",\"pages\":\"Article 101019\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213422023000987/pdfft?md5=99cd836599379ae327efed4c3301b406&pid=1-s2.0-S2213422023000987-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Medicine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213422023000987\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Medicine Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213422023000987","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Traditional Chinese medicine diagnostic prediction model for holistic syndrome differentiation based on deep learning
Background
With the development of traditional Chinese medicine (TCM) syndrome knowledge accumulation and artificial intelligence (AI), this study proposes a holistic TCM syndrome differentiation model for the classification prediction of multiple TCM syndromes based on deep learning and accelerates the construction of modern foundational TCM equipment.
Methods
We searched publicly available TCM guidelines and textbooks for expert knowledge and validated these sources using ten-fold cross-validation. Based on the BERT and CNN models, with the classification constraints from TCM holistic syndrome differentiation, the TCM-BERT-CNN model was constructed, which completes the end-to-end TCM holistic syndrome text classification task through symptom input and syndrome output. We assessed the performance of the model using precision, recall, and F1 scores as evaluation metrics.
Results
The TCM-BERT-CNN model had a higher precision (0.926), recall (0.9238), and F1 score (0.9247) than the BERT, TextCNN, LSTM RNN, and LSTM ATTENTION models and achieved superior results in model performance and predictive classification of most TCM syndromes. Symptom feature visualization demonstrated that the TCM-BERT-CNN model can effectively identify the correlation and characteristics of symptoms in different syndromes with a strong correlation, which conforms to the diagnostic characteristics of TCM syndromes.
Conclusions
The TCM-BERT-CNN model proposed in this study is in accordance with the TCM diagnostic characteristics of holistic syndrome differentiation and can effectively complete diagnostic prediction tasks for various TCM syndromes. The results of this study provide new insights into the development of deep learning models for holistic syndrome differentiation in TCM.
期刊介绍:
Integrative Medicine Research (IMR) is a quarterly, peer-reviewed journal focused on scientific research for integrative medicine including traditional medicine (emphasis on acupuncture and herbal medicine), complementary and alternative medicine, and systems medicine. The journal includes papers on basic research, clinical research, methodology, theory, computational analysis and modelling, topical reviews, medical history, education and policy based on physiology, pathology, diagnosis and the systems approach in the field of integrative medicine.