超临界分式吉勒-梅因哈特系统的尖峰解决方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-18 DOI:10.1007/s00332-023-10002-6
Daniel Gomez, Markus De Medeiros, Jun-cheng Wei, Wen Yang
{"title":"超临界分式吉勒-梅因哈特系统的尖峰解决方案","authors":"Daniel Gomez, Markus De Medeiros, Jun-cheng Wei, Wen Yang","doi":"10.1007/s00332-023-10002-6","DOIUrl":null,"url":null,"abstract":"<p>Localized solutions are known to arise in a variety of singularly perturbed reaction–diffusion systems. The Gierer–Meinhardt (GM) system is one such example and has been the focus of numerous rigorous and formal studies. A more recent focus has been the study of localized solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper, we investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s fractional order is supercritical. Specifically, we assume the fractional orders of the activator and inhibitor are, respectively, in the ranges <span>\\(s_1\\in (1/4,1)\\)</span> and <span>\\(s_2\\in (0,1/2)\\)</span>. Using the method of matched asymptotic expansions, we reduce the construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue problem. In addition to these formal results, we also rigorously establish the existence and stability of ground state solutions when the inhibitor’s fractional order is nearly critical. The fractional Green’s function, for which we present a rapidly converging series expansion, is prominently featured throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the striking similarities between the one-dimensional supercritical GM system and the classical three-dimensional GM system can be attributed to the leading-order singular behaviour of the fractional Green’s function.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spike Solutions to the Supercritical Fractional Gierer–Meinhardt System\",\"authors\":\"Daniel Gomez, Markus De Medeiros, Jun-cheng Wei, Wen Yang\",\"doi\":\"10.1007/s00332-023-10002-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Localized solutions are known to arise in a variety of singularly perturbed reaction–diffusion systems. The Gierer–Meinhardt (GM) system is one such example and has been the focus of numerous rigorous and formal studies. A more recent focus has been the study of localized solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper, we investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s fractional order is supercritical. Specifically, we assume the fractional orders of the activator and inhibitor are, respectively, in the ranges <span>\\\\(s_1\\\\in (1/4,1)\\\\)</span> and <span>\\\\(s_2\\\\in (0,1/2)\\\\)</span>. Using the method of matched asymptotic expansions, we reduce the construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue problem. In addition to these formal results, we also rigorously establish the existence and stability of ground state solutions when the inhibitor’s fractional order is nearly critical. The fractional Green’s function, for which we present a rapidly converging series expansion, is prominently featured throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the striking similarities between the one-dimensional supercritical GM system and the classical three-dimensional GM system can be attributed to the leading-order singular behaviour of the fractional Green’s function.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-10002-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10002-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在各种奇异扰动反应扩散系统中都会出现局部解。Gierer-Meinhardt(GM)系统就是这样一个例子,也是众多严格和正式研究的焦点。最近的一个重点是研究表现出反常扩散的系统中的局部解,特别是具有莱维飞行的系统。在本文中,我们研究了抑制剂分数阶为超临界的一维分数 GM 系统的局部解。具体来说,我们假设激活剂和抑制剂的分数阶分别在 \(s_1\in (1/4,1)\) 和 \(s_2\in (0,1/2)\)范围内。利用匹配渐近展开法,我们将多尖峰解的构建简化为求解一个非线性代数系统。然后通过研究一个全局耦合特征值问题来解决所得到的多尖峰解的线性稳定性问题。除了这些形式上的结果,我们还严格确定了当抑制剂的分数阶接近临界时,基态解的存在性和稳定性。我们提出了一个快速收敛的数列展开,分数格林函数在本文的形式分析和严格分析中都占有突出地位。此外,我们还强调,一维超临界 GM 系统与经典三维 GM 系统之间的惊人相似性可归因于分数格林函数的前导阶奇异行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spike Solutions to the Supercritical Fractional Gierer–Meinhardt System

Localized solutions are known to arise in a variety of singularly perturbed reaction–diffusion systems. The Gierer–Meinhardt (GM) system is one such example and has been the focus of numerous rigorous and formal studies. A more recent focus has been the study of localized solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper, we investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s fractional order is supercritical. Specifically, we assume the fractional orders of the activator and inhibitor are, respectively, in the ranges \(s_1\in (1/4,1)\) and \(s_2\in (0,1/2)\). Using the method of matched asymptotic expansions, we reduce the construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue problem. In addition to these formal results, we also rigorously establish the existence and stability of ground state solutions when the inhibitor’s fractional order is nearly critical. The fractional Green’s function, for which we present a rapidly converging series expansion, is prominently featured throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the striking similarities between the one-dimensional supercritical GM system and the classical three-dimensional GM system can be attributed to the leading-order singular behaviour of the fractional Green’s function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1