Jieyun Bai, Andy Lo, James Kennelly, Roshan Sharma, Na Zhao, Mark L Trew, Jichao Zhao
{"title":"肺动脉高压诱发心房颤动的机制:人体心房多尺度模型的启示。","authors":"Jieyun Bai, Andy Lo, James Kennelly, Roshan Sharma, Na Zhao, Mark L Trew, Jichao Zhao","doi":"10.1098/rsfs.2023.0039","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10<sup>-2</sup> µM in the RA versus 0.9 × 10<sup>-3</sup> µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s<sup>-1</sup> in the RA versus -0.05 m s<sup>-1</sup> in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230039"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria.\",\"authors\":\"Jieyun Bai, Andy Lo, James Kennelly, Roshan Sharma, Na Zhao, Mark L Trew, Jichao Zhao\",\"doi\":\"10.1098/rsfs.2023.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10<sup>-2</sup> µM in the RA versus 0.9 × 10<sup>-3</sup> µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s<sup>-1</sup> in the RA versus -0.05 m s<sup>-1</sup> in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"13 6\",\"pages\":\"20230039\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2023.0039\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria.
This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10-2 µM in the RA versus 0.9 × 10-3 µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s-1 in the RA versus -0.05 m s-1 in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.