在天体生物学环境中通过分子通讯进行信息传输。

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-01-01 Epub Date: 2023-12-18 DOI:10.1089/ast.2023.0069
Manasvi Lingam
{"title":"在天体生物学环境中通过分子通讯进行信息传输。","authors":"Manasvi Lingam","doi":"10.1089/ast.2023.0069","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity <i>C</i> (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate <math><mi>ℐ</mi></math> are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance <i>d</i> as <math><mi>ℐ</mi></math> ∝ <i>d</i><sup>-4</sup> and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (<i>C</i> ∼ 3.1 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 4.7 × 10<sup>-2</sup> bits/s) and deep sea hydrothermal vents (<i>C</i> ∼ 4.2 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 1.2 × 10<sup>-1</sup> bits/s) to the hydrocarbon lakes and seas of Titan (<i>C</i> ∼ 3.8 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 2.6 × 10<sup>-1</sup> bits/s).</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"84-99"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Transmission via Molecular Communication in Astrobiological Environments.\",\"authors\":\"Manasvi Lingam\",\"doi\":\"10.1089/ast.2023.0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity <i>C</i> (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate <math><mi>ℐ</mi></math> are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance <i>d</i> as <math><mi>ℐ</mi></math> ∝ <i>d</i><sup>-4</sup> and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (<i>C</i> ∼ 3.1 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 4.7 × 10<sup>-2</sup> bits/s) and deep sea hydrothermal vents (<i>C</i> ∼ 4.2 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 1.2 × 10<sup>-1</sup> bits/s) to the hydrocarbon lakes and seas of Titan (<i>C</i> ∼ 3.8 × 10<sup>3</sup> bits/s; <math><mi>ℐ</mi></math> ∼ 2.6 × 10<sup>-1</sup> bits/s).</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"84-99\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2023.0069\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0069","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在地球上,通过细胞间的分子通讯进行信息传递的现象无处不在,这在生命的起源和早期进化中甚至可能起着至关重要的作用。基于这些考虑,我们阐明了一个简单的分子通讯模型,即信号分子从发送者扩散到接收者的过程。推导出该通信系统的信道容量 C(最大信息传输速率)和实际信息传输速率ℐ的乐观启发式估计值;这两个量,尤其是后者,被证明与实验室实验和更复杂的理论模型基本一致。信道容量对环境参数的依赖性可能很弱,而实际信息传输速率可能会随着细胞间距离 d 的增加而增加,即ℐ∝d-4,而且在不同环境下可能会有很大的差异。这两个变量是根据不同的天体生物学环境粗略计算得出的,从地球的上层海洋(C ∼ 3.1 × 103 bits/s;ℐ ∼ 4.7 × 10-2 bits/s) 和深海热液喷口 (C ∼ 4.2 × 103 bits/s; ℐ ∼ 1.2 × 10-1 bits/s) 到土卫六的碳氢化合物湖和海 (C ∼ 3.8 × 103 bits/s; ℐ ∼ 2.6 × 10-1 bits/s)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information Transmission via Molecular Communication in Astrobiological Environments.

The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity C (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance d as d-4 and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (C ∼ 3.1 × 103 bits/s; ∼ 4.7 × 10-2 bits/s) and deep sea hydrothermal vents (C ∼ 4.2 × 103 bits/s; ∼ 1.2 × 10-1 bits/s) to the hydrocarbon lakes and seas of Titan (C ∼ 3.8 × 103 bits/s; ∼ 2.6 × 10-1 bits/s).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. Radiation-Driven Destruction of Thiophene and Methyl-Substituted Thiophenes. Rapid Destruction of Lipid Biomarkers Under Simulated Cosmic Radiation. Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere. A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1