等离子体丝中太赫兹场诱导二次谐波生成的局部测量。

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2023-12-13 DOI:10.1007/s12200-023-00095-y
Kareem J Garriga Francis, Xi-Cheng Zhang
{"title":"等离子体丝中太赫兹场诱导二次谐波生成的局部测量。","authors":"Kareem J Garriga Francis, Xi-Cheng Zhang","doi":"10.1007/s12200-023-00095-y","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of Terahertz Field-Induced Second Harmonic (TFISH) Generation is revisited to introduce a single-shot detection scheme based on third order nonlinearities. Focused specifically on the further development of THz plasma-based sources, we begin our research by reimagining the TFISH system to serve as a direct plasma diagnostic. In this work, an optical probe beam is used to mix directly with the strong ponderomotive current associated with laser-induced ionization. A four-wave mixing (FWM) process then generates a strong second-harmonic optical wave because of the mixing of the probe beam with the nonlinear current components oscillating at THz frequencies. The observed conversion efficiency is high enough that for the first time, the TFISH signal appears visible to the human eye. We perform spectral, spatial, and temporal analysis on the detected second-harmonic frequency and show its direct relationship to the nonlinear current. Further, a method to detect incoherent and coherent THz inside plasma filaments is devised using spatio-temporal couplings. The single-shot detection configurations are theoretically described using a combination of expanded FWM models with Kostenbauder and Gaussian Q-matrices. We show that the retrieved temporal traces for THz radiation from single- and two-color laser-induced air-plasma sources match theoretical descriptions very well. High temporal resolution is shown with a detection bandwidth limited only by the spatial extent of the probe laser beam. Large detection bandwidth and temporal characterization is shown for THz radiation confined to under-dense plasma filaments induced by < 100 fs lasers below the relativistic intensity limit.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Local measurement of terahertz field-induced second harmonic generation in plasma filaments.\",\"authors\":\"Kareem J Garriga Francis, Xi-Cheng Zhang\",\"doi\":\"10.1007/s12200-023-00095-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The concept of Terahertz Field-Induced Second Harmonic (TFISH) Generation is revisited to introduce a single-shot detection scheme based on third order nonlinearities. Focused specifically on the further development of THz plasma-based sources, we begin our research by reimagining the TFISH system to serve as a direct plasma diagnostic. In this work, an optical probe beam is used to mix directly with the strong ponderomotive current associated with laser-induced ionization. A four-wave mixing (FWM) process then generates a strong second-harmonic optical wave because of the mixing of the probe beam with the nonlinear current components oscillating at THz frequencies. The observed conversion efficiency is high enough that for the first time, the TFISH signal appears visible to the human eye. We perform spectral, spatial, and temporal analysis on the detected second-harmonic frequency and show its direct relationship to the nonlinear current. Further, a method to detect incoherent and coherent THz inside plasma filaments is devised using spatio-temporal couplings. The single-shot detection configurations are theoretically described using a combination of expanded FWM models with Kostenbauder and Gaussian Q-matrices. We show that the retrieved temporal traces for THz radiation from single- and two-color laser-induced air-plasma sources match theoretical descriptions very well. High temporal resolution is shown with a detection bandwidth limited only by the spatial extent of the probe laser beam. Large detection bandwidth and temporal characterization is shown for THz radiation confined to under-dense plasma filaments induced by < 100 fs lasers below the relativistic intensity limit.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-023-00095-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00095-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们重新审视了太赫兹场致二次谐波(TFISH)发生的概念,引入了基于三阶非线性的单次检测方案。我们将研究重点特别放在太赫兹等离子体源的进一步发展上,首先对 TFISH 系统进行了重新设计,使其成为一种直接的等离子体诊断方法。在这项工作中,光学探针光束直接与激光诱导电离相关的强思索动电流混合。由于探针光束与太赫兹频率振荡的非线性电流分量混合,四波混合(FWM)过程随后产生了强烈的二次谐波光波。观察到的转换效率非常高,TFISH 信号首次出现在人眼可见的范围内。我们对检测到的二次谐波频率进行了光谱、空间和时间分析,并显示了它与非线性电流的直接关系。此外,我们还设计了一种利用时空耦合探测等离子体丝内非相干和相干太赫兹的方法。单次探测配置是通过将扩展 FWM 模型与 Kostenbauder 和高斯 Q 矩阵相结合来进行理论描述的。我们表明,从单色和双色激光诱导空气等离子体源获取的太赫兹辐射时间轨迹与理论描述非常吻合。探测带宽仅受探测激光束的空间范围限制,显示了高时间分辨率。由以下因素诱导的局限于欠密集等离子体丝的太赫兹辐射显示了较大的探测带宽和时间特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local measurement of terahertz field-induced second harmonic generation in plasma filaments.

The concept of Terahertz Field-Induced Second Harmonic (TFISH) Generation is revisited to introduce a single-shot detection scheme based on third order nonlinearities. Focused specifically on the further development of THz plasma-based sources, we begin our research by reimagining the TFISH system to serve as a direct plasma diagnostic. In this work, an optical probe beam is used to mix directly with the strong ponderomotive current associated with laser-induced ionization. A four-wave mixing (FWM) process then generates a strong second-harmonic optical wave because of the mixing of the probe beam with the nonlinear current components oscillating at THz frequencies. The observed conversion efficiency is high enough that for the first time, the TFISH signal appears visible to the human eye. We perform spectral, spatial, and temporal analysis on the detected second-harmonic frequency and show its direct relationship to the nonlinear current. Further, a method to detect incoherent and coherent THz inside plasma filaments is devised using spatio-temporal couplings. The single-shot detection configurations are theoretically described using a combination of expanded FWM models with Kostenbauder and Gaussian Q-matrices. We show that the retrieved temporal traces for THz radiation from single- and two-color laser-induced air-plasma sources match theoretical descriptions very well. High temporal resolution is shown with a detection bandwidth limited only by the spatial extent of the probe laser beam. Large detection bandwidth and temporal characterization is shown for THz radiation confined to under-dense plasma filaments induced by < 100 fs lasers below the relativistic intensity limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light. Quantitative modeling of perovskite-based direct X-ray flat panel detectors. Dual-functional application of Ca2Ta2O7:Bi3+/Eu3+ phosphors in multicolor tunable optical thermometry and WLED.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1