Oscar Plogmark, Mårten Silvanius, Max Olsson, Carl Hjelte, Magnus Ekström, Oskar Frånberg
{"title":"测量全身惰性气体冲洗。","authors":"Oscar Plogmark, Mårten Silvanius, Max Olsson, Carl Hjelte, Magnus Ekström, Oskar Frånberg","doi":"10.28920/dhm53.4.321-326","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Quantifying inert gas wash-out is crucial to understanding the pathophysiology of decompression sickness. In this study, we developed a portable closed-circuit device for measuring inert gas wash-out and validated its precision and accuracy both with and without human subjects.</p><p><strong>Methods: </strong>We developed an exhalate monitor with sensors for volume, temperature, water vapor and oxygen. Inert gas volume was extrapolated from these inputs using the ideal gas law. The device's ability to detect volume differences while connected to a breathing machine was analysed by injecting a given gas volume eight times. One hundred and seventy-two coupled before-and-after measurements were then compared with a paired t-test. Drift in measured inert gas volume during unlabored breathing was evaluated in three subjects at rest using multilevel linear regression. A quasi-experimental cross-over study with the same subjects was conducted to evaluate the device's ability to detect inert gas changes in relation to diving interventions and simulate power.</p><p><strong>Results: </strong>The difference between the injected volume (1,996 ml) and the device's measured volume (1,986 ml) was -10 ml. The 95% confidence interval (CI) for the measured volume was 1,969 to 2,003 ml. Mean drift during a 43 min period of unlaboured breathing was -19 ml, (95% CI, -37 to -1). Our power simulation, based on a cross-over study design, determined a sample size of two subjects to detect a true mean difference of total inert gas wash-out volume of 100 ml.</p><p><strong>Conclusions: </strong>We present a portable device with acceptable precision and accuracy to measure inert gas wash-out differences that may be physiologically relevant in the pathophysiology of decompression sickness.</p>","PeriodicalId":11296,"journal":{"name":"Diving and hyperbaric medicine","volume":"53 4","pages":"321-326"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measuring whole body inert gas wash-out.\",\"authors\":\"Oscar Plogmark, Mårten Silvanius, Max Olsson, Carl Hjelte, Magnus Ekström, Oskar Frånberg\",\"doi\":\"10.28920/dhm53.4.321-326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Quantifying inert gas wash-out is crucial to understanding the pathophysiology of decompression sickness. In this study, we developed a portable closed-circuit device for measuring inert gas wash-out and validated its precision and accuracy both with and without human subjects.</p><p><strong>Methods: </strong>We developed an exhalate monitor with sensors for volume, temperature, water vapor and oxygen. Inert gas volume was extrapolated from these inputs using the ideal gas law. The device's ability to detect volume differences while connected to a breathing machine was analysed by injecting a given gas volume eight times. One hundred and seventy-two coupled before-and-after measurements were then compared with a paired t-test. Drift in measured inert gas volume during unlabored breathing was evaluated in three subjects at rest using multilevel linear regression. A quasi-experimental cross-over study with the same subjects was conducted to evaluate the device's ability to detect inert gas changes in relation to diving interventions and simulate power.</p><p><strong>Results: </strong>The difference between the injected volume (1,996 ml) and the device's measured volume (1,986 ml) was -10 ml. The 95% confidence interval (CI) for the measured volume was 1,969 to 2,003 ml. Mean drift during a 43 min period of unlaboured breathing was -19 ml, (95% CI, -37 to -1). Our power simulation, based on a cross-over study design, determined a sample size of two subjects to detect a true mean difference of total inert gas wash-out volume of 100 ml.</p><p><strong>Conclusions: </strong>We present a portable device with acceptable precision and accuracy to measure inert gas wash-out differences that may be physiologically relevant in the pathophysiology of decompression sickness.</p>\",\"PeriodicalId\":11296,\"journal\":{\"name\":\"Diving and hyperbaric medicine\",\"volume\":\"53 4\",\"pages\":\"321-326\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diving and hyperbaric medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.28920/dhm53.4.321-326\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diving and hyperbaric medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.28920/dhm53.4.321-326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Introduction: Quantifying inert gas wash-out is crucial to understanding the pathophysiology of decompression sickness. In this study, we developed a portable closed-circuit device for measuring inert gas wash-out and validated its precision and accuracy both with and without human subjects.
Methods: We developed an exhalate monitor with sensors for volume, temperature, water vapor and oxygen. Inert gas volume was extrapolated from these inputs using the ideal gas law. The device's ability to detect volume differences while connected to a breathing machine was analysed by injecting a given gas volume eight times. One hundred and seventy-two coupled before-and-after measurements were then compared with a paired t-test. Drift in measured inert gas volume during unlabored breathing was evaluated in three subjects at rest using multilevel linear regression. A quasi-experimental cross-over study with the same subjects was conducted to evaluate the device's ability to detect inert gas changes in relation to diving interventions and simulate power.
Results: The difference between the injected volume (1,996 ml) and the device's measured volume (1,986 ml) was -10 ml. The 95% confidence interval (CI) for the measured volume was 1,969 to 2,003 ml. Mean drift during a 43 min period of unlaboured breathing was -19 ml, (95% CI, -37 to -1). Our power simulation, based on a cross-over study design, determined a sample size of two subjects to detect a true mean difference of total inert gas wash-out volume of 100 ml.
Conclusions: We present a portable device with acceptable precision and accuracy to measure inert gas wash-out differences that may be physiologically relevant in the pathophysiology of decompression sickness.
期刊介绍:
Diving and Hyperbaric Medicine (DHM) is the combined journal of the South Pacific Underwater Medicine Society (SPUMS) and the European Underwater and Baromedical Society (EUBS). It seeks to publish papers of high quality on all aspects of diving and hyperbaric medicine of interest to diving medical professionals, physicians of all specialties, scientists, members of the diving and hyperbaric industries, and divers. Manuscripts must be offered exclusively to Diving and Hyperbaric Medicine, unless clearly authenticated copyright exemption accompaniesthe manuscript. All manuscripts will be subject to peer review. Accepted contributions will also be subject to editing.