{"title":"甲氨蝶呤治疗小儿急性淋巴细胞白血病疗效和安全性的药物遗传学方面。","authors":"Oksana Dmitryevna Gurieva, Marina Ivanovna Savelyeva, Timur Tejmurazovich Valiev, Zhannet Alimovna Sozaeva, Svetlana Nikolaevna Kondratenko, Mikhail Vitalyevich Ilyin","doi":"10.1515/dmpt-2023-0079","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the role of ABCB1 (C3435T rs1045642, rs1128503, rs2032582, rs4148738), SLCO1B1 T521C rs4149056 genetic polymorphisms in the development of major types of methotrexate (MTX) toxicities and the occurrence of a terminal event (death, relapse) in pediatric АLL.</p><p><strong>Methods: </strong>The study included 124 patients diagnosed with pediatric ALL. All patients treated according to the protocols of the German BFM group (2002/2009) with high-dose (1,000, 2,000 and 5,000 mg/m<sup>2</sup>) methotrexate. MTX-related toxicities, including hematologic, hepatic and renal, were evaluated according to the common terminology criteria for adverse events version 5.0 (CTCAE v.5.0). Real-time PCR method was used to investigate polymorphisms of ABCB1 and SLCO1B1 genes. The study material was peripheral blood.</p><p><strong>Results: </strong>A competitive analysis demonstrated significant relationships between MTX ADRs. The results of the study support the existence of relationships between some ADRs and MTX kinetics. An associative analysis showed association with the development of AEs to methotrexate indicating their clinical significance from different genetic polymorphisms protein-transporters. The available results confirm the associations of the studied genes with the increased risk of high doses MTX toxic ADRs and terminal events.</p><p><strong>Conclusions: </strong>Complementing the existing criteria for pediatric ALL risk groups with pharmacogenetic indicators will allow further individualization of therapy.</p>","PeriodicalId":11332,"journal":{"name":"Drug metabolism and personalized therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacogenetic aspects of efficacy and safety of methotrexate treatment in pediatric acute lymphoblastic leukemia.\",\"authors\":\"Oksana Dmitryevna Gurieva, Marina Ivanovna Savelyeva, Timur Tejmurazovich Valiev, Zhannet Alimovna Sozaeva, Svetlana Nikolaevna Kondratenko, Mikhail Vitalyevich Ilyin\",\"doi\":\"10.1515/dmpt-2023-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To evaluate the role of ABCB1 (C3435T rs1045642, rs1128503, rs2032582, rs4148738), SLCO1B1 T521C rs4149056 genetic polymorphisms in the development of major types of methotrexate (MTX) toxicities and the occurrence of a terminal event (death, relapse) in pediatric АLL.</p><p><strong>Methods: </strong>The study included 124 patients diagnosed with pediatric ALL. All patients treated according to the protocols of the German BFM group (2002/2009) with high-dose (1,000, 2,000 and 5,000 mg/m<sup>2</sup>) methotrexate. MTX-related toxicities, including hematologic, hepatic and renal, were evaluated according to the common terminology criteria for adverse events version 5.0 (CTCAE v.5.0). Real-time PCR method was used to investigate polymorphisms of ABCB1 and SLCO1B1 genes. The study material was peripheral blood.</p><p><strong>Results: </strong>A competitive analysis demonstrated significant relationships between MTX ADRs. The results of the study support the existence of relationships between some ADRs and MTX kinetics. An associative analysis showed association with the development of AEs to methotrexate indicating their clinical significance from different genetic polymorphisms protein-transporters. The available results confirm the associations of the studied genes with the increased risk of high doses MTX toxic ADRs and terminal events.</p><p><strong>Conclusions: </strong>Complementing the existing criteria for pediatric ALL risk groups with pharmacogenetic indicators will allow further individualization of therapy.</p>\",\"PeriodicalId\":11332,\"journal\":{\"name\":\"Drug metabolism and personalized therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism and personalized therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dmpt-2023-0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and personalized therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmpt-2023-0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Pharmacogenetic aspects of efficacy and safety of methotrexate treatment in pediatric acute lymphoblastic leukemia.
Objectives: To evaluate the role of ABCB1 (C3435T rs1045642, rs1128503, rs2032582, rs4148738), SLCO1B1 T521C rs4149056 genetic polymorphisms in the development of major types of methotrexate (MTX) toxicities and the occurrence of a terminal event (death, relapse) in pediatric АLL.
Methods: The study included 124 patients diagnosed with pediatric ALL. All patients treated according to the protocols of the German BFM group (2002/2009) with high-dose (1,000, 2,000 and 5,000 mg/m2) methotrexate. MTX-related toxicities, including hematologic, hepatic and renal, were evaluated according to the common terminology criteria for adverse events version 5.0 (CTCAE v.5.0). Real-time PCR method was used to investigate polymorphisms of ABCB1 and SLCO1B1 genes. The study material was peripheral blood.
Results: A competitive analysis demonstrated significant relationships between MTX ADRs. The results of the study support the existence of relationships between some ADRs and MTX kinetics. An associative analysis showed association with the development of AEs to methotrexate indicating their clinical significance from different genetic polymorphisms protein-transporters. The available results confirm the associations of the studied genes with the increased risk of high doses MTX toxic ADRs and terminal events.
Conclusions: Complementing the existing criteria for pediatric ALL risk groups with pharmacogenetic indicators will allow further individualization of therapy.
期刊介绍:
Drug Metabolism and Personalized Therapy (DMPT) is a peer-reviewed journal, and is abstracted/indexed in relevant major Abstracting Services. It provides up-to-date research articles, reviews and opinion papers in the wide field of drug metabolism research, covering established, new and potential drugs, environmentally toxic chemicals, the mechanisms by which drugs may interact with each other and with biological systems, and the pharmacological and toxicological consequences of these interactions and drug metabolism and excretion. Topics: drug metabolizing enzymes, pharmacogenetics and pharmacogenomics, biochemical pharmacology, molecular pathology, clinical pharmacology, pharmacokinetics and drug-drug interactions, immunopharmacology, neuropsychopharmacology.