带有注意力机制的深度散射变换提高了基于肌电图的手势识别能力

Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily
{"title":"带有注意力机制的深度散射变换提高了基于肌电图的手势识别能力","authors":"Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily","doi":"10.1109/EMBC40787.2023.10340544","DOIUrl":null,"url":null,"abstract":"<p><p>Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Scattering Transform with Attention Mechanisms Improves EMG-based Hand Gesture Recognition.\",\"authors\":\"Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily\",\"doi\":\"10.1109/EMBC40787.2023.10340544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌电图(EMG)信号为了解支持不同手部动作的肌肉活动提供了宝贵的信息,但由于其随机性、噪声和信号的非稳态变化,对其进行分析具有挑战性。我们开创性地将小波散射变换(WST)和深度神经网络最近的序列建模发展所采用的注意力机制独特地结合起来,用于 EMG 模式的分类。我们的方法利用小波散射变换(WST)将信号分解为不同的频率成分,然后对小波系数进行非线性运算,从而为提取的特征创建更稳健的表示。这与不同的注意机制相结合,通常是通过考虑所有输入向量的加权组合来关注输入数据中最重要的部分。通过将这一技术应用于 EMG 信号,我们假设可以通过关注与不同手部动作相关的不同肌肉激活状态之间的相关性来提高分类的准确性。为了验证提出的假设,研究使用了基于实验室和可穿戴设备从不同环境中收集的三个常用 EMG 数据集。与其他方法相比,这种方法在肌电模式识别(PR)方面有明显改善,平均准确率高达 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Scattering Transform with Attention Mechanisms Improves EMG-based Hand Gesture Recognition.

Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1