{"title":"用于海洋能源的快速成型制造和复合材料:潮汐涡轮机案例。","authors":"Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui","doi":"10.1089/3dp.2021.0194","DOIUrl":null,"url":null,"abstract":"<p><p>The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1309-1319"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine.\",\"authors\":\"Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui\",\"doi\":\"10.1089/3dp.2021.0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 6\",\"pages\":\"1309-1319\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine.
The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.