{"title":"珊瑚细胞对不同种类双鞭毛藻的体外吞噬作用","authors":"Kaz Kawamura, Eiichi Shoguchi, Koki Nishitsuji, Satoko Sekida, Haruhi Narisoko, Hongwei Zhao, Yang Shu, Pengcheng Fu, Hiroshi Yamashita, Shigeki Fujiwara, Noriyuki Satoh","doi":"10.2108/zs230045","DOIUrl":null,"url":null,"abstract":"<p><p>Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral <i>Acropora tenuis</i> and the dinoflagellate <i>Breviolum minutum</i>, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact <i>A. tenuis</i>. We found that (a) <i>A. tenuis</i> larvae incorporate <i>Symbiodinium</i> and <i>Breviolum</i>, but not <i>Cladocopium</i>, and very few <i>Effrenium</i>, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with <i>Symbiodinium</i> and <i>Breviolum</i> than <i>Cladocopium</i> and <i>Effrenium</i>, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose <i>Symbiodinium</i> and <i>Breviolum</i>, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.</p>","PeriodicalId":24040,"journal":{"name":"Zoological Science","volume":"40 6","pages":"444-454"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Phagocytosis of Different Dinoflagellate Species by Coral Cells.\",\"authors\":\"Kaz Kawamura, Eiichi Shoguchi, Koki Nishitsuji, Satoko Sekida, Haruhi Narisoko, Hongwei Zhao, Yang Shu, Pengcheng Fu, Hiroshi Yamashita, Shigeki Fujiwara, Noriyuki Satoh\",\"doi\":\"10.2108/zs230045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral <i>Acropora tenuis</i> and the dinoflagellate <i>Breviolum minutum</i>, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact <i>A. tenuis</i>. We found that (a) <i>A. tenuis</i> larvae incorporate <i>Symbiodinium</i> and <i>Breviolum</i>, but not <i>Cladocopium</i>, and very few <i>Effrenium</i>, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with <i>Symbiodinium</i> and <i>Breviolum</i> than <i>Cladocopium</i> and <i>Effrenium</i>, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose <i>Symbiodinium</i> and <i>Breviolum</i>, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.</p>\",\"PeriodicalId\":24040,\"journal\":{\"name\":\"Zoological Science\",\"volume\":\"40 6\",\"pages\":\"444-454\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2108/zs230045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2108/zs230045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
In Vitro Phagocytosis of Different Dinoflagellate Species by Coral Cells.
Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral Acropora tenuis and the dinoflagellate Breviolum minutum, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact A. tenuis. We found that (a) A. tenuis larvae incorporate Symbiodinium and Breviolum, but not Cladocopium, and very few Effrenium, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with Symbiodinium and Breviolum than Cladocopium and Effrenium, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose Symbiodinium and Breviolum, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.
期刊介绍:
Zoological Science is published by the Zoological Society of Japan and devoted to publication of original articles, reviews and editorials that cover the broad field of zoology. The journal was founded in 1984 as a result of the consolidation of Zoological Magazine (1888–1983) and Annotationes Zoologicae Japonenses (1897–1983), the former official journals of the Zoological Society of Japan. Each annual volume consists of six regular issues, one every two months.