静息脑电图中基于 PLI 的连接性是检测 MCI 和 AD 的稳健且可通用的特征:在多元化多站点临床数据集上的验证

Thanh-Tung Trinh, Yi-Hung Liu, Chien-Te Wu, Wei-Hao Peng, Chung-Lin Hou, Chang-Hsin Weng, Chun-Ying Lee
{"title":"静息脑电图中基于 PLI 的连接性是检测 MCI 和 AD 的稳健且可通用的特征:在多元化多站点临床数据集上的验证","authors":"Thanh-Tung Trinh, Yi-Hung Liu, Chien-Te Wu, Wei-Hao Peng, Chung-Lin Hou, Chang-Hsin Weng, Chun-Ying Lee","doi":"10.1109/EMBC40787.2023.10340854","DOIUrl":null,"url":null,"abstract":"<p><p>The high prevalence rate of Alzheimer's disease (AD) and mild cognitive impairment (MCI) has been a serious public health threat to the modern society. Recently, many studies have demonstrated the potential of using non-invasive electroencephalography (EEG) and machine learning to assist the diagnosis of AD/MCI. However, the majority of these research recorded EEG signals from a single center, leading to significant concerns regarding the generalizability of the findings in clinical settings. The current study aims to reevaluate the effectiveness of EEG-based machine learning model for the detection of AD/MCI in the case of a relatively large and diverse data set. We collected resting-state EEG data from 150 participants across six hospitals and examined the classification performances of Linear Discriminative Analysis (LDA) classifiers on the phase lag index (PLI) feature. We also compared the performance of PLI over the other commonly-used EEG features and other classifiers. The model was first tested on a training set to select the feature subset and then further validated with an independent test set. The results demonstrate that PLI performs the best compared to other features. The LDA classifier trained with the optimal PLI features can provide 82.50% leave-one-participant-out cross-validation (LOPO-CV) accuracy on the training set and maintain a good enough performance with 75.00% accuracy on the test set. Our results suggest that PLI-based functional connectivity could be considered as a reliable bio-maker to detect AD/MCI in the real-world clinical settings.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLI-Based Connectivity in Resting-EEG is a Robust and Generalizable Feature for Detecting MCI and AD: A Validation on a Diverse Multisite Clinical Dataset.\",\"authors\":\"Thanh-Tung Trinh, Yi-Hung Liu, Chien-Te Wu, Wei-Hao Peng, Chung-Lin Hou, Chang-Hsin Weng, Chun-Ying Lee\",\"doi\":\"10.1109/EMBC40787.2023.10340854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high prevalence rate of Alzheimer's disease (AD) and mild cognitive impairment (MCI) has been a serious public health threat to the modern society. Recently, many studies have demonstrated the potential of using non-invasive electroencephalography (EEG) and machine learning to assist the diagnosis of AD/MCI. However, the majority of these research recorded EEG signals from a single center, leading to significant concerns regarding the generalizability of the findings in clinical settings. The current study aims to reevaluate the effectiveness of EEG-based machine learning model for the detection of AD/MCI in the case of a relatively large and diverse data set. We collected resting-state EEG data from 150 participants across six hospitals and examined the classification performances of Linear Discriminative Analysis (LDA) classifiers on the phase lag index (PLI) feature. We also compared the performance of PLI over the other commonly-used EEG features and other classifiers. The model was first tested on a training set to select the feature subset and then further validated with an independent test set. The results demonstrate that PLI performs the best compared to other features. The LDA classifier trained with the optimal PLI features can provide 82.50% leave-one-participant-out cross-validation (LOPO-CV) accuracy on the training set and maintain a good enough performance with 75.00% accuracy on the test set. Our results suggest that PLI-based functional connectivity could be considered as a reliable bio-maker to detect AD/MCI in the real-world clinical settings.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)和轻度认知障碍(MCI)的高发病率一直是现代社会面临的严重公共健康威胁。最近,许多研究证明了使用无创脑电图(EEG)和机器学习来辅助诊断 AD/MCI 的潜力。然而,这些研究大多记录了来自单一中心的脑电信号,导致人们对研究结果在临床环境中的通用性产生了极大的担忧。本研究旨在重新评估基于脑电图的机器学习模型在相对较大且多样化的数据集情况下检测 AD/MCI 的有效性。我们收集了六家医院 150 名参与者的静息态脑电图数据,并检验了线性判别分析(LDA)分类器对相位滞后指数(PLI)特征的分类性能。我们还比较了 PLI 与其他常用脑电图特征和其他分类器的性能。首先在训练集上对模型进行测试,以选择特征子集,然后用独立测试集进一步验证。结果表明,与其他特征相比,PLI 的表现最好。使用最优 PLI 特征训练的 LDA 分类器在训练集上能提供 82.50% 的离开一个参与者交叉验证(LOPO-CV)准确率,在测试集上能保持 75.00% 的准确率,表现足够好。我们的研究结果表明,基于 PLI 的功能连接可被视为在真实世界临床环境中检测 AD/MCI 的可靠生物标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLI-Based Connectivity in Resting-EEG is a Robust and Generalizable Feature for Detecting MCI and AD: A Validation on a Diverse Multisite Clinical Dataset.

The high prevalence rate of Alzheimer's disease (AD) and mild cognitive impairment (MCI) has been a serious public health threat to the modern society. Recently, many studies have demonstrated the potential of using non-invasive electroencephalography (EEG) and machine learning to assist the diagnosis of AD/MCI. However, the majority of these research recorded EEG signals from a single center, leading to significant concerns regarding the generalizability of the findings in clinical settings. The current study aims to reevaluate the effectiveness of EEG-based machine learning model for the detection of AD/MCI in the case of a relatively large and diverse data set. We collected resting-state EEG data from 150 participants across six hospitals and examined the classification performances of Linear Discriminative Analysis (LDA) classifiers on the phase lag index (PLI) feature. We also compared the performance of PLI over the other commonly-used EEG features and other classifiers. The model was first tested on a training set to select the feature subset and then further validated with an independent test set. The results demonstrate that PLI performs the best compared to other features. The LDA classifier trained with the optimal PLI features can provide 82.50% leave-one-participant-out cross-validation (LOPO-CV) accuracy on the training set and maintain a good enough performance with 75.00% accuracy on the test set. Our results suggest that PLI-based functional connectivity could be considered as a reliable bio-maker to detect AD/MCI in the real-world clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1