Natalie R Forte, Virginia N Veasey, Bethany J Christie, Amira Carter, Marli A Hanks, Alan Holderfield, Taylor Houston, Anil K Challa, Ashley N Turner
{"title":"让学生参与以遗传学课程为基础的本科生研究体验,在混合学习中利用秀丽隐杆线虫探索人类疾病基因变异。","authors":"Natalie R Forte, Virginia N Veasey, Bethany J Christie, Amira Carter, Marli A Hanks, Alan Holderfield, Taylor Houston, Anil K Challa, Ashley N Turner","doi":"10.1128/jmbe.00078-23","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic analysis in model systems using bioinformatic approaches provides a rich context for a concrete and conceptual understanding of gene structure and function. With the intent to engage students in research and explore disease biology utilizing the nematode <i>Caenorhabditis elegans</i> model, we developed a semester-long course-based undergraduate research experience (CURE) in a hybrid (online/in-person) learning environment-the gene-editing and evolutionary nematode exploration CURE (GENE-CURE). Using a combination of bioinformatic and molecular genetic tools, students performed structure-function analysis of disease-associated variants of uncertain significance (VUS) in human orthologs. With the aid of a series of workshop-style research sessions, students worked in teams of two to six members to identify a conserved VUS locus across species and design and test a polymerase chain reaction-based assay for targeted editing of a gene in the nematode and downstream genotyping. Research session discussions, responsible conduct of research training, electronic laboratory notebook, project reports, quizzes, and group poster presentations at a research symposium were assessed for mastery of learning objectives and research progress. Self-reflections were collected from students to assess engagement, science identity, and science efficacy. Qualitative analysis of these reflections indicated several gains suggesting that all students found many aspects of the GENE-CURE rewarding (learning process of research, self-confidence in research and science identity, and personal interest) and challenging (iterative research and failure, time management, COVID-19 pandemic, and life issues).</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"24 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engaging students in a genetics course-based undergraduate research experience utilizing <i>Caenorhabditis elegans</i> in hybrid learning to explore human disease gene variants.\",\"authors\":\"Natalie R Forte, Virginia N Veasey, Bethany J Christie, Amira Carter, Marli A Hanks, Alan Holderfield, Taylor Houston, Anil K Challa, Ashley N Turner\",\"doi\":\"10.1128/jmbe.00078-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic analysis in model systems using bioinformatic approaches provides a rich context for a concrete and conceptual understanding of gene structure and function. With the intent to engage students in research and explore disease biology utilizing the nematode <i>Caenorhabditis elegans</i> model, we developed a semester-long course-based undergraduate research experience (CURE) in a hybrid (online/in-person) learning environment-the gene-editing and evolutionary nematode exploration CURE (GENE-CURE). Using a combination of bioinformatic and molecular genetic tools, students performed structure-function analysis of disease-associated variants of uncertain significance (VUS) in human orthologs. With the aid of a series of workshop-style research sessions, students worked in teams of two to six members to identify a conserved VUS locus across species and design and test a polymerase chain reaction-based assay for targeted editing of a gene in the nematode and downstream genotyping. Research session discussions, responsible conduct of research training, electronic laboratory notebook, project reports, quizzes, and group poster presentations at a research symposium were assessed for mastery of learning objectives and research progress. Self-reflections were collected from students to assess engagement, science identity, and science efficacy. Qualitative analysis of these reflections indicated several gains suggesting that all students found many aspects of the GENE-CURE rewarding (learning process of research, self-confidence in research and science identity, and personal interest) and challenging (iterative research and failure, time management, COVID-19 pandemic, and life issues).</p>\",\"PeriodicalId\":46416,\"journal\":{\"name\":\"Journal of Microbiology & Biology Education\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology & Biology Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/jmbe.00078-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00078-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Engaging students in a genetics course-based undergraduate research experience utilizing Caenorhabditis elegans in hybrid learning to explore human disease gene variants.
Genetic analysis in model systems using bioinformatic approaches provides a rich context for a concrete and conceptual understanding of gene structure and function. With the intent to engage students in research and explore disease biology utilizing the nematode Caenorhabditis elegans model, we developed a semester-long course-based undergraduate research experience (CURE) in a hybrid (online/in-person) learning environment-the gene-editing and evolutionary nematode exploration CURE (GENE-CURE). Using a combination of bioinformatic and molecular genetic tools, students performed structure-function analysis of disease-associated variants of uncertain significance (VUS) in human orthologs. With the aid of a series of workshop-style research sessions, students worked in teams of two to six members to identify a conserved VUS locus across species and design and test a polymerase chain reaction-based assay for targeted editing of a gene in the nematode and downstream genotyping. Research session discussions, responsible conduct of research training, electronic laboratory notebook, project reports, quizzes, and group poster presentations at a research symposium were assessed for mastery of learning objectives and research progress. Self-reflections were collected from students to assess engagement, science identity, and science efficacy. Qualitative analysis of these reflections indicated several gains suggesting that all students found many aspects of the GENE-CURE rewarding (learning process of research, self-confidence in research and science identity, and personal interest) and challenging (iterative research and failure, time management, COVID-19 pandemic, and life issues).