{"title":"评估混合深度学习模型对多种下肢动作的分类。","authors":"Zilu Wang, Ian Daly, Junhua Li","doi":"10.1109/EMBC40787.2023.10340894","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer Interfaces (BCIs) interpret electroencephalography (EEG) signals and translate them into control commands for operating external devices. The motor imagery (MI) paradigm is popular in this context. Recent research has demonstrated that deep learning models, such as convolutional neural network (CNN) and long short-term memory (LSTM), are successful in a wide range of classification applications. This is because CNN has the property of spatial invariance, and LSTM can capture temporal associations among features. A combination of CNN and LSTM could enhance the classification performance of EEG signals due to the complementation of their strengths. Such a combination has been applied to MI classification based on EEG. However, most studies focused on either the upper limbs or treated both lower limbs as a single class, with only limited research performed on separate lower limbs. We, therefore, explored hybrid models (different combinations of CNN and LSTM) and evaluated them in the case of individual lower limbs. In addition, we classified multiple actions: MI, real movements and movement observations using four typical hybrid models and aimed to identify which model was the most suitable. The comparison results demonstrated that no model was significantly better than the others in terms of classification accuracy, but all of them were better than the chance level. Our study informs the possibility of the use of multiple actions in BCI systems and provides useful information for further research into the classification of separate lower limb actions.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of Hybrid Deep Learning Models for Classifying Multiple Lower Limb Actions.\",\"authors\":\"Zilu Wang, Ian Daly, Junhua Li\",\"doi\":\"10.1109/EMBC40787.2023.10340894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-computer Interfaces (BCIs) interpret electroencephalography (EEG) signals and translate them into control commands for operating external devices. The motor imagery (MI) paradigm is popular in this context. Recent research has demonstrated that deep learning models, such as convolutional neural network (CNN) and long short-term memory (LSTM), are successful in a wide range of classification applications. This is because CNN has the property of spatial invariance, and LSTM can capture temporal associations among features. A combination of CNN and LSTM could enhance the classification performance of EEG signals due to the complementation of their strengths. Such a combination has been applied to MI classification based on EEG. However, most studies focused on either the upper limbs or treated both lower limbs as a single class, with only limited research performed on separate lower limbs. We, therefore, explored hybrid models (different combinations of CNN and LSTM) and evaluated them in the case of individual lower limbs. In addition, we classified multiple actions: MI, real movements and movement observations using four typical hybrid models and aimed to identify which model was the most suitable. The comparison results demonstrated that no model was significantly better than the others in terms of classification accuracy, but all of them were better than the chance level. Our study informs the possibility of the use of multiple actions in BCI systems and provides useful information for further research into the classification of separate lower limb actions.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BCI)可解释脑电图(EEG)信号,并将其转化为操作外部设备的控制指令。运动图像(MI)范例在这方面很受欢迎。最近的研究表明,卷积神经网络(CNN)和长短期记忆(LSTM)等深度学习模型在广泛的分类应用中取得了成功。这是因为卷积神经网络具有空间不变性,而 LSTM 可以捕捉特征之间的时间关联。由于 CNN 和 LSTM 的优势互补,两者的结合可以提高脑电信号的分类性能。这种组合已被应用于基于脑电图的 MI 分类。然而,大多数研究都集中在上肢,或将两个下肢作为一个类别,对单独下肢的研究非常有限。因此,我们探索了混合模型(CNN 和 LSTM 的不同组合),并在单个下肢的情况下对其进行了评估。此外,我们还对多种动作进行了分类:我们使用四种典型的混合模型对多种动作进行了分类:MI、真实动作和动作观察,并旨在确定哪种模型最合适。比较结果表明,就分类准确性而言,没有哪个模型明显优于其他模型,但所有模型都优于偶然水平。我们的研究为在 BCI 系统中使用多种动作的可能性提供了信息,并为下肢单独动作分类的进一步研究提供了有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evaluation of Hybrid Deep Learning Models for Classifying Multiple Lower Limb Actions.

Brain-computer Interfaces (BCIs) interpret electroencephalography (EEG) signals and translate them into control commands for operating external devices. The motor imagery (MI) paradigm is popular in this context. Recent research has demonstrated that deep learning models, such as convolutional neural network (CNN) and long short-term memory (LSTM), are successful in a wide range of classification applications. This is because CNN has the property of spatial invariance, and LSTM can capture temporal associations among features. A combination of CNN and LSTM could enhance the classification performance of EEG signals due to the complementation of their strengths. Such a combination has been applied to MI classification based on EEG. However, most studies focused on either the upper limbs or treated both lower limbs as a single class, with only limited research performed on separate lower limbs. We, therefore, explored hybrid models (different combinations of CNN and LSTM) and evaluated them in the case of individual lower limbs. In addition, we classified multiple actions: MI, real movements and movement observations using four typical hybrid models and aimed to identify which model was the most suitable. The comparison results demonstrated that no model was significantly better than the others in terms of classification accuracy, but all of them were better than the chance level. Our study informs the possibility of the use of multiple actions in BCI systems and provides useful information for further research into the classification of separate lower limb actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Cleverballoon: An integrated approach for developing a drug-coated balloon with everolimus. Machine Learning Models Predict the Need of Amputation and/or Peripheral Artery Revascularization in Hypertensive Patients Within 7-Years Follow-Up. WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1