Bingjian Guo , Ziwei Zou , Zheng Huang , Qianyi Wang , Jinghua Qin , Yue Guo , Min Dong , Jinbin Wei , Shihan Pan , Zhiheng Su
{"title":"使用便携式近红外光谱仪确定牡蛎的地理来源和糖原含量:分类和回归方法的比较","authors":"Bingjian Guo , Ziwei Zou , Zheng Huang , Qianyi Wang , Jinghua Qin , Yue Guo , Min Dong , Jinbin Wei , Shihan Pan , Zhiheng Su","doi":"10.1016/j.vibspec.2023.103641","DOIUrl":null,"url":null,"abstract":"<div><p>Oysters are extensively cultivated worldwide. However, significant variations in chemical composition, quality, and price exist between oysters from different geographical origins. This study employed portable near-infrared spectroscopy in conjunction with chemometric analysis to determine the geographical origin and glycogen content of oysters. Pretreatment methods (multiplicative scattering correction, first derivative, and second derivative) were used to preprocess the raw spectra. Partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and support vector machine (SVM) were then adopted to establish the qualitative models. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were compared for predicting the glycogen content. The results revealed that the PLS-DA, OPLS-DA, and SVM models classified the geographical origin of oysters with 100% accuracy. For quantitative analysis, the regression equations displayed high predictive ability. The SVMR model was superior to the PLSR model for glycogen content prediction, with a coefficient of determination of prediction (<em>R</em><sup>2</sup><sub>P</sub>) of 0.9253 and a residual prediction deviation (RPD) of 3.62. Therefore, the proposed approach is suitable for the accurate and environmentally friendly determination of the geographical origin and glycogen content of oysters, thus representing an attractive alternative method for the traceability supervision and quantitative analysis of seafood products.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"130 ","pages":"Article 103641"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203123001480/pdfft?md5=1de96b8130330d5e8d6db9322994a505&pid=1-s2.0-S0924203123001480-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Determining the geographical origin and glycogen content of oysters using portable near-infrared spectroscopy: Comparison of classification and regression approaches\",\"authors\":\"Bingjian Guo , Ziwei Zou , Zheng Huang , Qianyi Wang , Jinghua Qin , Yue Guo , Min Dong , Jinbin Wei , Shihan Pan , Zhiheng Su\",\"doi\":\"10.1016/j.vibspec.2023.103641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oysters are extensively cultivated worldwide. However, significant variations in chemical composition, quality, and price exist between oysters from different geographical origins. This study employed portable near-infrared spectroscopy in conjunction with chemometric analysis to determine the geographical origin and glycogen content of oysters. Pretreatment methods (multiplicative scattering correction, first derivative, and second derivative) were used to preprocess the raw spectra. Partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and support vector machine (SVM) were then adopted to establish the qualitative models. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were compared for predicting the glycogen content. The results revealed that the PLS-DA, OPLS-DA, and SVM models classified the geographical origin of oysters with 100% accuracy. For quantitative analysis, the regression equations displayed high predictive ability. The SVMR model was superior to the PLSR model for glycogen content prediction, with a coefficient of determination of prediction (<em>R</em><sup>2</sup><sub>P</sub>) of 0.9253 and a residual prediction deviation (RPD) of 3.62. Therefore, the proposed approach is suitable for the accurate and environmentally friendly determination of the geographical origin and glycogen content of oysters, thus representing an attractive alternative method for the traceability supervision and quantitative analysis of seafood products.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"130 \",\"pages\":\"Article 103641\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001480/pdfft?md5=1de96b8130330d5e8d6db9322994a505&pid=1-s2.0-S0924203123001480-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001480\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001480","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Determining the geographical origin and glycogen content of oysters using portable near-infrared spectroscopy: Comparison of classification and regression approaches
Oysters are extensively cultivated worldwide. However, significant variations in chemical composition, quality, and price exist between oysters from different geographical origins. This study employed portable near-infrared spectroscopy in conjunction with chemometric analysis to determine the geographical origin and glycogen content of oysters. Pretreatment methods (multiplicative scattering correction, first derivative, and second derivative) were used to preprocess the raw spectra. Partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and support vector machine (SVM) were then adopted to establish the qualitative models. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were compared for predicting the glycogen content. The results revealed that the PLS-DA, OPLS-DA, and SVM models classified the geographical origin of oysters with 100% accuracy. For quantitative analysis, the regression equations displayed high predictive ability. The SVMR model was superior to the PLSR model for glycogen content prediction, with a coefficient of determination of prediction (R2P) of 0.9253 and a residual prediction deviation (RPD) of 3.62. Therefore, the proposed approach is suitable for the accurate and environmentally friendly determination of the geographical origin and glycogen content of oysters, thus representing an attractive alternative method for the traceability supervision and quantitative analysis of seafood products.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.