硅异质结光伏组件对进水敏感性的综合物理模型

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-12-19 DOI:10.1016/j.xcrp.2023.101751
Luca Gnocchi, Olatz Arriaga Arruti, Christophe Ballif, Alessandro Virtuani
{"title":"硅异质结光伏组件对进水敏感性的综合物理模型","authors":"Luca Gnocchi, Olatz Arriaga Arruti, Christophe Ballif, Alessandro Virtuani","doi":"10.1016/j.xcrp.2023.101751","DOIUrl":null,"url":null,"abstract":"<p>Silicon heterojunction (SHJ)-solar modules—when encapsulated with ethylene vinyl acetate (EVA)—are known to be extremely sensitive to water ingress. The reason for this is, however, not clear. Here, we explain the root causes of this degradation mechanism specific to SHJ, proposing a detailed microscopic model. The role of EVA is instrumental in facilitating a faster water uptake in the module. However, additional observations led us to consider the role of glass in the degradation process. The moisture at the glass/encapsulant interface promotes a glass corrosion process, releasing sodium (Na) ions that, in combination with water, forms molecular Na hydroxide. This can percolate through the EVA, eventually reaching the solar cell. Na ions may act as recombination centers in the passivating layers or at the a-Si/c-Si interface, reducing the cell’s passivation properties. Finally, we propose strategies to reinforce the water resistance and overall reliability of SHJ solar modules.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"36 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive physical model for the sensitivity of silicon heterojunction photovoltaic modules to water ingress\",\"authors\":\"Luca Gnocchi, Olatz Arriaga Arruti, Christophe Ballif, Alessandro Virtuani\",\"doi\":\"10.1016/j.xcrp.2023.101751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon heterojunction (SHJ)-solar modules—when encapsulated with ethylene vinyl acetate (EVA)—are known to be extremely sensitive to water ingress. The reason for this is, however, not clear. Here, we explain the root causes of this degradation mechanism specific to SHJ, proposing a detailed microscopic model. The role of EVA is instrumental in facilitating a faster water uptake in the module. However, additional observations led us to consider the role of glass in the degradation process. The moisture at the glass/encapsulant interface promotes a glass corrosion process, releasing sodium (Na) ions that, in combination with water, forms molecular Na hydroxide. This can percolate through the EVA, eventually reaching the solar cell. Na ions may act as recombination centers in the passivating layers or at the a-Si/c-Si interface, reducing the cell’s passivation properties. Finally, we propose strategies to reinforce the water resistance and overall reliability of SHJ solar modules.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101751\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101751","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,采用乙烯-醋酸乙烯(EVA)封装的硅异质结(SHJ)太阳能组件对进水极为敏感。然而,造成这种情况的原因尚不清楚。在此,我们解释了 SHJ 特有的这种降解机制的根本原因,并提出了一个详细的微观模型。EVA 的作用有助于加快模块的吸水速度。然而,更多的观察结果促使我们考虑玻璃在降解过程中的作用。玻璃/胶囊界面上的湿气会促进玻璃腐蚀过程,释放出钠离子(Na),与水结合形成氢氧化钠分子。这种离子会渗透 EVA,最终到达太阳能电池。Na 离子可能成为钝化层或 a-Si/c-Si 界面的重组中心,从而降低电池的钝化性能。最后,我们提出了加强 SHJ 太阳能模块的耐水性和整体可靠性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive physical model for the sensitivity of silicon heterojunction photovoltaic modules to water ingress

Silicon heterojunction (SHJ)-solar modules—when encapsulated with ethylene vinyl acetate (EVA)—are known to be extremely sensitive to water ingress. The reason for this is, however, not clear. Here, we explain the root causes of this degradation mechanism specific to SHJ, proposing a detailed microscopic model. The role of EVA is instrumental in facilitating a faster water uptake in the module. However, additional observations led us to consider the role of glass in the degradation process. The moisture at the glass/encapsulant interface promotes a glass corrosion process, releasing sodium (Na) ions that, in combination with water, forms molecular Na hydroxide. This can percolate through the EVA, eventually reaching the solar cell. Na ions may act as recombination centers in the passivating layers or at the a-Si/c-Si interface, reducing the cell’s passivation properties. Finally, we propose strategies to reinforce the water resistance and overall reliability of SHJ solar modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1