Eloïse Mestre, Inna Orel, Daniel Henze, Laura Chauvet, Sebastian Burhenn, Sébastien Dozias, Fabienne Brulé-Morabito, Judith Golda, Claire Douat
{"title":"比较千赫兹和兆赫兹等离子射流产生 CO 和灭活大肠杆菌的情况","authors":"Eloïse Mestre, Inna Orel, Daniel Henze, Laura Chauvet, Sebastian Burhenn, Sébastien Dozias, Fabienne Brulé-Morabito, Judith Golda, Claire Douat","doi":"10.1002/ppap.202300182","DOIUrl":null,"url":null,"abstract":"As carbon monoxide has a broad spectrum of biological activities, its production by plasma is a significant advantage in medicine. This paper presents a comparative study of the CO production of two plasma jets: a MHz-jet and a kHz-jet. Both were fed with a helium gas with <math altimg=\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0001\" location=\"graphic/ppap202300182-math-0001.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> admixture (0%–1%). CO was produced by <math altimg=\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0002\" location=\"graphic/ppap202300182-math-0002.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> dissociation and its maximal concentration was hundreds of parts per million, which is safe for clinical applications. For the same specific energy input, the CO production was more efficient for the kHz-jet than the MHz-jet. Both had antibacterial properties on <i>Escherichia coli</i>, and the addition of <math altimg=\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0003\" location=\"graphic/ppap202300182-math-0003.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> improved them for the MHz-jet, while it reduced them for the kHz-jet.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of CO production and Escherichia coli inactivation by a kHz and a MHz plasma jet\",\"authors\":\"Eloïse Mestre, Inna Orel, Daniel Henze, Laura Chauvet, Sebastian Burhenn, Sébastien Dozias, Fabienne Brulé-Morabito, Judith Golda, Claire Douat\",\"doi\":\"10.1002/ppap.202300182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As carbon monoxide has a broad spectrum of biological activities, its production by plasma is a significant advantage in medicine. This paper presents a comparative study of the CO production of two plasma jets: a MHz-jet and a kHz-jet. Both were fed with a helium gas with <math altimg=\\\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0001\\\" location=\\\"graphic/ppap202300182-math-0001.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> admixture (0%–1%). CO was produced by <math altimg=\\\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0002\\\" location=\\\"graphic/ppap202300182-math-0002.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> dissociation and its maximal concentration was hundreds of parts per million, which is safe for clinical applications. For the same specific energy input, the CO production was more efficient for the kHz-jet than the MHz-jet. Both had antibacterial properties on <i>Escherichia coli</i>, and the addition of <math altimg=\\\"urn:x-wiley:16128850:media:ppap202300182:ppap202300182-math-0003\\\" location=\\\"graphic/ppap202300182-math-0003.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> improved them for the MHz-jet, while it reduced them for the kHz-jet.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202300182\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300182","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Comparison of CO production and Escherichia coli inactivation by a kHz and a MHz plasma jet
As carbon monoxide has a broad spectrum of biological activities, its production by plasma is a significant advantage in medicine. This paper presents a comparative study of the CO production of two plasma jets: a MHz-jet and a kHz-jet. Both were fed with a helium gas with admixture (0%–1%). CO was produced by dissociation and its maximal concentration was hundreds of parts per million, which is safe for clinical applications. For the same specific energy input, the CO production was more efficient for the kHz-jet than the MHz-jet. Both had antibacterial properties on Escherichia coli, and the addition of improved them for the MHz-jet, while it reduced them for the kHz-jet.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.