{"title":"构建投资组合的混合方法:将两阶段集合预测模型与投资组合优化相结合","authors":"Wei Chen, Zinuo Liu, Lifen Jia","doi":"10.1111/coin.12617","DOIUrl":null,"url":null,"abstract":"<p>Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach for portfolio construction: Combing two-stage ensemble forecasting model with portfolio optimization\",\"authors\":\"Wei Chen, Zinuo Liu, Lifen Jia\",\"doi\":\"10.1111/coin.12617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12617\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12617","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A hybrid approach for portfolio construction: Combing two-stage ensemble forecasting model with portfolio optimization
Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.