{"title":"装鸡汤面的金属罐顶部空间腐蚀的调查和机理","authors":"Yajun Wu, Ken Ruffley, Melvin A. Pascall","doi":"10.1002/pts.2786","DOIUrl":null,"url":null,"abstract":"This study demonstrated a method to investigate corrosion formation in the headspace of canned chicken noodle soup. In this method, Selected Ion Flow Tube–Mass Spectrometer was used to identify and quantify chemical compounds in raw and cooked chicken noodle soup and those that migrated towards the polymer coating of the metal cans. Scanning electron microscopy (SEM) was used to detect the appearance of breaches in the coating of the tested cans, and energy dispersive X-ray spectroscopy (EDS) allowed for analysis of the elemental composition of the internal walls of the tested cans. Inductively coupled plasma–mass spectrometry (ICP-MS) provided information about the migration of iron and tin from the internal walls of the cans into the packaged soups. SEM images showed that breaches developed in the coating of the tested cans when corrosion occurred. The EDS analyses showed that tin and iron exposures were associated with extra peaks in the EDS. These peaks were attributed to sulphur. From the results obtained, it was concluded that the process of heat retorting contributed to the formation of sulphur-containing volatile compounds that bonded to the coating in the headspace of the tested cans. These then penetrated the protective coating and facilitated avenues for other oxidative chemicals in the product to cause corrosion and staining. Results from the ICP-MS analyses showed that tin and iron subsequently migrated from the corroded cans toward the chicken soup. These results thus showed how corrosive compounds in a retorted food initiated corrosion in metal cans.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and mechanism of headspace corrosion in metal cans filled chicken noodle soup\",\"authors\":\"Yajun Wu, Ken Ruffley, Melvin A. Pascall\",\"doi\":\"10.1002/pts.2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrated a method to investigate corrosion formation in the headspace of canned chicken noodle soup. In this method, Selected Ion Flow Tube–Mass Spectrometer was used to identify and quantify chemical compounds in raw and cooked chicken noodle soup and those that migrated towards the polymer coating of the metal cans. Scanning electron microscopy (SEM) was used to detect the appearance of breaches in the coating of the tested cans, and energy dispersive X-ray spectroscopy (EDS) allowed for analysis of the elemental composition of the internal walls of the tested cans. Inductively coupled plasma–mass spectrometry (ICP-MS) provided information about the migration of iron and tin from the internal walls of the cans into the packaged soups. SEM images showed that breaches developed in the coating of the tested cans when corrosion occurred. The EDS analyses showed that tin and iron exposures were associated with extra peaks in the EDS. These peaks were attributed to sulphur. From the results obtained, it was concluded that the process of heat retorting contributed to the formation of sulphur-containing volatile compounds that bonded to the coating in the headspace of the tested cans. These then penetrated the protective coating and facilitated avenues for other oxidative chemicals in the product to cause corrosion and staining. Results from the ICP-MS analyses showed that tin and iron subsequently migrated from the corroded cans toward the chicken soup. These results thus showed how corrosive compounds in a retorted food initiated corrosion in metal cans.\",\"PeriodicalId\":19626,\"journal\":{\"name\":\"Packaging Technology and Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging Technology and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pts.2786\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2786","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
本研究展示了一种研究罐装鸡汤面顶层空间腐蚀形成的方法。在该方法中,使用了选择离子流管-质谱仪来识别和量化生鸡汤面和熟鸡汤面中的化学物质,以及那些向金属罐聚合物涂层迁移的化学物质。扫描电子显微镜(SEM)用于检测受测罐头涂层的破损情况,能量色散 X 射线光谱(EDS)用于分析受测罐头内壁的元素组成。电感耦合等离子体质谱仪(ICP-MS)提供了铁和锡从罐头内壁迁移到包装汤中的信息。扫描电子显微镜(SEM)图像显示,受测罐头的涂层在发生腐蚀时出现了破损。EDS 分析表明,锡和铁的暴露与 EDS 中的额外峰值有关。这些峰值归因于硫。根据所获得的结果,可以得出结论:热蒸馏过程导致了含硫挥发性化合物的形成,这些化合物与测试罐顶部空间的涂层结合在一起。然后,这些化合物渗入保护涂层,为产品中的其他氧化化学物质提供了造成腐蚀和染色的途径。ICP-MS 分析结果表明,锡和铁随后从腐蚀的罐头中向鸡汤迁移。因此,这些结果表明了复蒸食品中的腐蚀性化合物是如何引发金属罐腐蚀的。
Investigation and mechanism of headspace corrosion in metal cans filled chicken noodle soup
This study demonstrated a method to investigate corrosion formation in the headspace of canned chicken noodle soup. In this method, Selected Ion Flow Tube–Mass Spectrometer was used to identify and quantify chemical compounds in raw and cooked chicken noodle soup and those that migrated towards the polymer coating of the metal cans. Scanning electron microscopy (SEM) was used to detect the appearance of breaches in the coating of the tested cans, and energy dispersive X-ray spectroscopy (EDS) allowed for analysis of the elemental composition of the internal walls of the tested cans. Inductively coupled plasma–mass spectrometry (ICP-MS) provided information about the migration of iron and tin from the internal walls of the cans into the packaged soups. SEM images showed that breaches developed in the coating of the tested cans when corrosion occurred. The EDS analyses showed that tin and iron exposures were associated with extra peaks in the EDS. These peaks were attributed to sulphur. From the results obtained, it was concluded that the process of heat retorting contributed to the formation of sulphur-containing volatile compounds that bonded to the coating in the headspace of the tested cans. These then penetrated the protective coating and facilitated avenues for other oxidative chemicals in the product to cause corrosion and staining. Results from the ICP-MS analyses showed that tin and iron subsequently migrated from the corroded cans toward the chicken soup. These results thus showed how corrosive compounds in a retorted food initiated corrosion in metal cans.
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging