{"title":"中国林地和草地生长季指标与净初级生产力的变化及关系。","authors":"Linli Cui, Jun Shi, Fengjin Xiao","doi":"10.1186/s13021-023-00245-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016.</p><h3>Results</h3><p>SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade<sup>−1</sup>, 3.3 days·decade<sup>−1</sup>, 6.7 days·decade<sup>−1</sup> and 10.7 gC m<sup>−2</sup>·decade<sup>−1</sup>, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC).</p><h3>Conclusion</h3><p>The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740267/pdf/","citationCount":"0","resultStr":"{\"title\":\"Change and relationship between growing season metrics and net primary productivity in forestland and grassland in China\",\"authors\":\"Linli Cui, Jun Shi, Fengjin Xiao\",\"doi\":\"10.1186/s13021-023-00245-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016.</p><h3>Results</h3><p>SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade<sup>−1</sup>, 3.3 days·decade<sup>−1</sup>, 6.7 days·decade<sup>−1</sup> and 10.7 gC m<sup>−2</sup>·decade<sup>−1</sup>, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC).</p><h3>Conclusion</h3><p>The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740267/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-023-00245-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-023-00245-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Change and relationship between growing season metrics and net primary productivity in forestland and grassland in China
Background
Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016.
Results
SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade−1, 3.3 days·decade−1, 6.7 days·decade−1 and 10.7 gC m−2·decade−1, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC).
Conclusion
The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.