通过跨生物过程的迁移学习推断分化轨迹。

Cell systems Pub Date : 2024-01-17 Epub Date: 2023-12-20 DOI:10.1016/j.cels.2023.12.002
Gaurav Jumde, Bastiaan Spanjaard, Jan Philipp Junker
{"title":"通过跨生物过程的迁移学习推断分化轨迹。","authors":"Gaurav Jumde, Bastiaan Spanjaard, Jan Philipp Junker","doi":"10.1016/j.cels.2023.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference of differentiation trajectories by transfer learning across biological processes.\",\"authors\":\"Gaurav Jumde, Bastiaan Spanjaard, Jan Philipp Junker\",\"doi\":\"10.1016/j.cels.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.12.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.12.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干细胞通过一系列转录状态的转换分化成不同的命运。目前的计算方法可以从单细胞转录组学数据重建分化轨迹,但在多大程度上可以预测整个生物过程的分化仍是未知数。在这里,我们利用迁移学习来推断早期胚胎发育和成体造血的分化过程并量化可预测性。总体而言,我们发现非线性方法优于线性方法,而且我们使用定制的变异自动编码器实现了最佳预测,该编码器明确地模拟了转录方差的变化。在胚胎发育过程中,我们观察到了较高的预测准确率,但在成人造血过程中,我们发现与真实数据的一致性略低。我们证明,这种差异可以用胚胎分化过程中转录过程的一致性高于成体平衡过程来解释。总之,我们建立了一个量化和利用细胞分化轨迹可预测性的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference of differentiation trajectories by transfer learning across biological processes.

Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plausible, robust biological oscillations through allelic buffering. Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. Automated single-cell omics end-to-end framework with data-driven batch inference. Entrainment and multi-stability of the p53 oscillator in human cells. Protein turnover regulation is critical for influenza A virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1