Jeeban Panthi, Thomas Boving, Soni M. Pradhanang, Mamoon Ismail
{"title":"用于监测无压含水层沿岸地下水动态的延时地球物理测量。","authors":"Jeeban Panthi, Thomas Boving, Soni M. Pradhanang, Mamoon Ismail","doi":"10.1111/gwat.13382","DOIUrl":null,"url":null,"abstract":"<p>The coastal zone, which is the interface between land and sea, is hydrodynamically very active due to the complex interactions of various hydrological controls and variable-density fluids. These forces vary over time, resulting in a state of dynamic equilibrium in the system. The major hydrological processes in coastal aquifer systems are salt water intrusion and submarine groundwater discharge, which are interdependent. Monitoring these complex processes is crucial for sustainable coastal zone management but poses a significant research challenge. In this study, we demonstrate the effectiveness of non-invasive geophysical techniques, specifically the time-lapse electrical resistivity imaging method, in conjunction with groundwater monitoring, for monitoring coastal groundwater dynamics in an unconfined aquifer at varying time scales and hydrogeological settings present at formerly glaciated sites worldwide. We generated two-dimensional baseline salt water intrusion maps for the test site, located on the coast of Rhode Island, USA. The time-lapse electrical resistivity survey method enables the rapid estimation of fresh groundwater discharge. Our approach offers insight into the mechanisms and seasonably variable salt water–freshwater interactions in unconfined heterogeneous aquifers. Although the results are site-specific, their implications are broad and may stimulate other studies related to sea to land pollution (sea water intrusion) and land to sea pollution (groundwater discharge) in heterogeneous coastal aquifer settings.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"513-526"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Lapse Geophysical Measurements for Monitoring Coastal Groundwater Dynamics in an Unconfined Aquifer\",\"authors\":\"Jeeban Panthi, Thomas Boving, Soni M. Pradhanang, Mamoon Ismail\",\"doi\":\"10.1111/gwat.13382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coastal zone, which is the interface between land and sea, is hydrodynamically very active due to the complex interactions of various hydrological controls and variable-density fluids. These forces vary over time, resulting in a state of dynamic equilibrium in the system. The major hydrological processes in coastal aquifer systems are salt water intrusion and submarine groundwater discharge, which are interdependent. Monitoring these complex processes is crucial for sustainable coastal zone management but poses a significant research challenge. In this study, we demonstrate the effectiveness of non-invasive geophysical techniques, specifically the time-lapse electrical resistivity imaging method, in conjunction with groundwater monitoring, for monitoring coastal groundwater dynamics in an unconfined aquifer at varying time scales and hydrogeological settings present at formerly glaciated sites worldwide. We generated two-dimensional baseline salt water intrusion maps for the test site, located on the coast of Rhode Island, USA. The time-lapse electrical resistivity survey method enables the rapid estimation of fresh groundwater discharge. Our approach offers insight into the mechanisms and seasonably variable salt water–freshwater interactions in unconfined heterogeneous aquifers. Although the results are site-specific, their implications are broad and may stimulate other studies related to sea to land pollution (sea water intrusion) and land to sea pollution (groundwater discharge) in heterogeneous coastal aquifer settings.</p>\",\"PeriodicalId\":12866,\"journal\":{\"name\":\"Groundwater\",\"volume\":\"62 4\",\"pages\":\"513-526\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13382\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13382","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Time-Lapse Geophysical Measurements for Monitoring Coastal Groundwater Dynamics in an Unconfined Aquifer
The coastal zone, which is the interface between land and sea, is hydrodynamically very active due to the complex interactions of various hydrological controls and variable-density fluids. These forces vary over time, resulting in a state of dynamic equilibrium in the system. The major hydrological processes in coastal aquifer systems are salt water intrusion and submarine groundwater discharge, which are interdependent. Monitoring these complex processes is crucial for sustainable coastal zone management but poses a significant research challenge. In this study, we demonstrate the effectiveness of non-invasive geophysical techniques, specifically the time-lapse electrical resistivity imaging method, in conjunction with groundwater monitoring, for monitoring coastal groundwater dynamics in an unconfined aquifer at varying time scales and hydrogeological settings present at formerly glaciated sites worldwide. We generated two-dimensional baseline salt water intrusion maps for the test site, located on the coast of Rhode Island, USA. The time-lapse electrical resistivity survey method enables the rapid estimation of fresh groundwater discharge. Our approach offers insight into the mechanisms and seasonably variable salt water–freshwater interactions in unconfined heterogeneous aquifers. Although the results are site-specific, their implications are broad and may stimulate other studies related to sea to land pollution (sea water intrusion) and land to sea pollution (groundwater discharge) in heterogeneous coastal aquifer settings.
期刊介绍:
Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.