Liu Yang, Yuanyuan Tian, Quanzhong Li, Jun Yan, Jiancheng Xie
{"title":"中国东部东源斑岩W矿床石英的质地和微量元素特征","authors":"Liu Yang, Yuanyuan Tian, Quanzhong Li, Jun Yan, Jiancheng Xie","doi":"10.1016/j.sesci.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Most W mineralization in the world is genetically related with highly fractionated granites, but little is known about ore-forming fluid evolution of W mineralization associated with weakly fractionated granites. To reveal the ore-forming fluid evolution of W mineralization related to the weakly fractionated granites, a combined study of field and petrographic observations, mineralogical, morphological, and in-situ geochemical data of different-type quartz from Dongyuan porphyry W deposit in the world-class Jiangnan W belt, China, was carried out. The petrographic observation and cathodoluminescence (CL) imaging revealed the quartz in the Dongyuan W deposit can be divided into hydrothermal quartz (Qz1 with core-edge structure, and Qz2 with oscillating zone) in the mineralized alteration zone, and magmatic quartz (Qz3 with inherited core) in granodiorite porphyry. The LA-ICP-MS results of the Dongyuan quartz samples show that Al may enter the quartz structure with trivalent Al<sup>3+</sup> instead of Si<sup>4+</sup>, monovalent alkali metals and bivalent (Ge<sup>2+</sup>, Sr<sup>2+</sup>) cations is mainly of charge compensators in quartz, while Ti possibly is in the form of microinclusions of titanium-containing minerals in quartz. The integrated interpretation of the trace element compositions (e.g., Al and Ti contents, Al/Na ratios) and CL texture of quartz indicate high temperature (>400 °C) and uniform Al-rich acidic fluid are conducive to W precipitation of the Dongyuan deposit. Furthermore, trace element compositions (e.g., Ge, Al) and micro-textures of quartz have the potential for distinguishing magmatic and hydrothermal quartz in the Dongyuan W deposit.</p></div>","PeriodicalId":54172,"journal":{"name":"Solid Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451912X23000405/pdfft?md5=9c41d4d4caef17f926d9fa42aa64a75d&pid=1-s2.0-S2451912X23000405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Texture and trace element characteristics of quartz in the Dongyuan porphyry W deposit, eastern China\",\"authors\":\"Liu Yang, Yuanyuan Tian, Quanzhong Li, Jun Yan, Jiancheng Xie\",\"doi\":\"10.1016/j.sesci.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most W mineralization in the world is genetically related with highly fractionated granites, but little is known about ore-forming fluid evolution of W mineralization associated with weakly fractionated granites. To reveal the ore-forming fluid evolution of W mineralization related to the weakly fractionated granites, a combined study of field and petrographic observations, mineralogical, morphological, and in-situ geochemical data of different-type quartz from Dongyuan porphyry W deposit in the world-class Jiangnan W belt, China, was carried out. The petrographic observation and cathodoluminescence (CL) imaging revealed the quartz in the Dongyuan W deposit can be divided into hydrothermal quartz (Qz1 with core-edge structure, and Qz2 with oscillating zone) in the mineralized alteration zone, and magmatic quartz (Qz3 with inherited core) in granodiorite porphyry. The LA-ICP-MS results of the Dongyuan quartz samples show that Al may enter the quartz structure with trivalent Al<sup>3+</sup> instead of Si<sup>4+</sup>, monovalent alkali metals and bivalent (Ge<sup>2+</sup>, Sr<sup>2+</sup>) cations is mainly of charge compensators in quartz, while Ti possibly is in the form of microinclusions of titanium-containing minerals in quartz. The integrated interpretation of the trace element compositions (e.g., Al and Ti contents, Al/Na ratios) and CL texture of quartz indicate high temperature (>400 °C) and uniform Al-rich acidic fluid are conducive to W precipitation of the Dongyuan deposit. Furthermore, trace element compositions (e.g., Ge, Al) and micro-textures of quartz have the potential for distinguishing magmatic and hydrothermal quartz in the Dongyuan W deposit.</p></div>\",\"PeriodicalId\":54172,\"journal\":{\"name\":\"Solid Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451912X23000405/pdfft?md5=9c41d4d4caef17f926d9fa42aa64a75d&pid=1-s2.0-S2451912X23000405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451912X23000405\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451912X23000405","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Texture and trace element characteristics of quartz in the Dongyuan porphyry W deposit, eastern China
Most W mineralization in the world is genetically related with highly fractionated granites, but little is known about ore-forming fluid evolution of W mineralization associated with weakly fractionated granites. To reveal the ore-forming fluid evolution of W mineralization related to the weakly fractionated granites, a combined study of field and petrographic observations, mineralogical, morphological, and in-situ geochemical data of different-type quartz from Dongyuan porphyry W deposit in the world-class Jiangnan W belt, China, was carried out. The petrographic observation and cathodoluminescence (CL) imaging revealed the quartz in the Dongyuan W deposit can be divided into hydrothermal quartz (Qz1 with core-edge structure, and Qz2 with oscillating zone) in the mineralized alteration zone, and magmatic quartz (Qz3 with inherited core) in granodiorite porphyry. The LA-ICP-MS results of the Dongyuan quartz samples show that Al may enter the quartz structure with trivalent Al3+ instead of Si4+, monovalent alkali metals and bivalent (Ge2+, Sr2+) cations is mainly of charge compensators in quartz, while Ti possibly is in the form of microinclusions of titanium-containing minerals in quartz. The integrated interpretation of the trace element compositions (e.g., Al and Ti contents, Al/Na ratios) and CL texture of quartz indicate high temperature (>400 °C) and uniform Al-rich acidic fluid are conducive to W precipitation of the Dongyuan deposit. Furthermore, trace element compositions (e.g., Ge, Al) and micro-textures of quartz have the potential for distinguishing magmatic and hydrothermal quartz in the Dongyuan W deposit.