研究吸水率对木屑颗粒填充酚醛混合聚合物复合材料机械性能的影响

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL International Polymer Processing Pub Date : 2023-12-25 DOI:10.1515/ipp-2023-4407
Ganesan Brindha, Sujin Jose Arul, A. H. Lenin, Jani Stanly Kochappa Premila
{"title":"研究吸水率对木屑颗粒填充酚醛混合聚合物复合材料机械性能的影响","authors":"Ganesan Brindha, Sujin Jose Arul, A. H. Lenin, Jani Stanly Kochappa Premila","doi":"10.1515/ipp-2023-4407","DOIUrl":null,"url":null,"abstract":"Abstract The water uptake behavior of Wood Dust (WD)/Prosopis Juliflora Fiber (PJF)/Phenol-Formaldehyde (PF) hybrid composites which are immersed in distilled and seawater environments was evaluated. Three different composite samples were fabricated by reinforcing WD and PJF with PF resin. The fabricated specimens were immersed in sea and distilled water to note down the moisture content absorption of the specimens for different time intervals from 0 to 240 h. The dry and wet specimens underwent mechanical properties testing as per ASTM standards and the findings for wet and dry specimens have been compared and analyzed. It is observed that the specimens which are immersed in sea (salt) water absorb more moisture content than the specimen immersed in distilled water and the PJF-rich (30 wt% of PJF & 10 wt % of WD) specimen absorbs more water than the other specimens. The water uptake behavior of the WD/PJF/PF hybrid composite follows a non-Fickian behavior. The mechanical performance (tensile, flexural, and impact) of the 10 wt % of WD 30 wt % of PJF specimen was better than that of other specimens at dry (before immersion) conditions and lost strength when immersed in sea and distilled water. SEM analysis was also done on the broken surface of the tested specimens which were exposed to the water environment.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effects of water uptake on the mechanical properties of wood dust particle filled Prosopis Juliflora reinforced phenol formaldehyde hybrid polymer composites\",\"authors\":\"Ganesan Brindha, Sujin Jose Arul, A. H. Lenin, Jani Stanly Kochappa Premila\",\"doi\":\"10.1515/ipp-2023-4407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The water uptake behavior of Wood Dust (WD)/Prosopis Juliflora Fiber (PJF)/Phenol-Formaldehyde (PF) hybrid composites which are immersed in distilled and seawater environments was evaluated. Three different composite samples were fabricated by reinforcing WD and PJF with PF resin. The fabricated specimens were immersed in sea and distilled water to note down the moisture content absorption of the specimens for different time intervals from 0 to 240 h. The dry and wet specimens underwent mechanical properties testing as per ASTM standards and the findings for wet and dry specimens have been compared and analyzed. It is observed that the specimens which are immersed in sea (salt) water absorb more moisture content than the specimen immersed in distilled water and the PJF-rich (30 wt% of PJF & 10 wt % of WD) specimen absorbs more water than the other specimens. The water uptake behavior of the WD/PJF/PF hybrid composite follows a non-Fickian behavior. The mechanical performance (tensile, flexural, and impact) of the 10 wt % of WD 30 wt % of PJF specimen was better than that of other specimens at dry (before immersion) conditions and lost strength when immersed in sea and distilled water. SEM analysis was also done on the broken surface of the tested specimens which were exposed to the water environment.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4407\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4407","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 评估了浸泡在蒸馏水和海水环境中的木屑(WD)/糙米纤维(PJF)/苯酚-甲醛(PF)混合复合材料的吸水行为。通过用 PF 树脂增强 WD 和 PJF,制作了三种不同的复合材料样品。将制作好的试样浸入海水和蒸馏水中,在 0 至 240 小时的不同时间间隔内记录试样的含水率。按照 ASTM 标准对干试样和湿试样进行了机械性能测试,并对干试样和湿试样的测试结果进行了比较和分析。据观察,浸泡在海水(盐水)中的试样比浸泡在蒸馏水中的试样吸收更多的水分,富含 PJF(30 wt% 的 PJF 和 10 wt% 的 WD)的试样比其他试样吸收更多的水分。WD/PJF/PF 混合复合材料的吸水行为遵循非斐氏行为。在干燥(浸泡前)条件下,10 wt % WD 30 wt % PJF 试样的机械性能(拉伸、弯曲和冲击)优于其他试样,而在海水和蒸馏水中浸泡时,其强度会降低。此外,还对暴露在水环境中的测试试样的破损表面进行了扫描电镜分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the effects of water uptake on the mechanical properties of wood dust particle filled Prosopis Juliflora reinforced phenol formaldehyde hybrid polymer composites
Abstract The water uptake behavior of Wood Dust (WD)/Prosopis Juliflora Fiber (PJF)/Phenol-Formaldehyde (PF) hybrid composites which are immersed in distilled and seawater environments was evaluated. Three different composite samples were fabricated by reinforcing WD and PJF with PF resin. The fabricated specimens were immersed in sea and distilled water to note down the moisture content absorption of the specimens for different time intervals from 0 to 240 h. The dry and wet specimens underwent mechanical properties testing as per ASTM standards and the findings for wet and dry specimens have been compared and analyzed. It is observed that the specimens which are immersed in sea (salt) water absorb more moisture content than the specimen immersed in distilled water and the PJF-rich (30 wt% of PJF & 10 wt % of WD) specimen absorbs more water than the other specimens. The water uptake behavior of the WD/PJF/PF hybrid composite follows a non-Fickian behavior. The mechanical performance (tensile, flexural, and impact) of the 10 wt % of WD 30 wt % of PJF specimen was better than that of other specimens at dry (before immersion) conditions and lost strength when immersed in sea and distilled water. SEM analysis was also done on the broken surface of the tested specimens which were exposed to the water environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
期刊最新文献
Irradiation of PMMA intraocular lenses by a 365 nm UV lamp Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC) Probing the microstructural properties of metal-reinforced polymer composites Evaluation of the processing conditions on the production of expanded or plasticized wood plastic composite with cashew nutshell powder An experimental validation of diffusion-based devolatilization models in extruders using post-industrial and post-consumer plastic waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1