用于太阳能绿色制氢的高性能 rGO-ZnO/WO3 异质结光催化剂

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical Sciences Pub Date : 2023-12-22 DOI:10.1007/s12039-023-02231-9
Arundhati Sarkar, Arindam Mandal, Sayantanu Mandal, Surya Kanta Sen, Dipali Banerjee, Saibal Ganguly, Kajari Kargupta
{"title":"用于太阳能绿色制氢的高性能 rGO-ZnO/WO3 异质结光催化剂","authors":"Arundhati Sarkar,&nbsp;Arindam Mandal,&nbsp;Sayantanu Mandal,&nbsp;Surya Kanta Sen,&nbsp;Dipali Banerjee,&nbsp;Saibal Ganguly,&nbsp;Kajari Kargupta","doi":"10.1007/s12039-023-02231-9","DOIUrl":null,"url":null,"abstract":"<div><p>A novel rGO (Reduced Graphene Oxide)-ZnO/WO<sub>3</sub> nanohybrid has tremendous commercialization potential for photocatalytic hydrogen generation because of its cheap production costs, specific optical properties, remarkable stability and conductivity. It decreases charge recombination, improves photoelectronic transit, and broadens visible light absorption with rGO. This study developed a simple nano-casting procedure to include WO<sub>3</sub> nanocuboids into rGO-ZnO nanorods formed by hydrothermal treatment with the appropriate amount of ZnO grafted on rGO. Improved photocatalytic activity has been discovered in rGO-ZnO nanocomposite with 1:3 ratios. The optimized powder rGO/ZnO (1:3) nanocomposite paired with WO<sub>3</sub> exhibits the maximum photocatalytic hydrogen production activity (13.29 mmoles g<sup>−1</sup>h<sup>−1</sup>), which is approximately 1.27 times more active than the powder rGO/ZnO (1:3) nanocomposite (10.46 mmoles g<sup>−1</sup> h<sup>−1</sup>). The contributions of rGO/ZnO (1:3) and integrated WO<sub>3</sub> to photocatalytic hydrogen evolution enhancement have been fully investigated through experiment and characterization. The logical design and bottom-up synthesis of eco-friendly energy conversion materials with high performance and low-cost lead to commercialization and become the focal point of this effort.</p><h3>Graphical abstract</h3><p>Optimized rGO-ZnO (1:3)/ WO<sub>3</sub> heterojunction: a robust photocatalyst with a low band gap exhibits a slow rate of electron-hole recombination and remarkable (13.29 mmole g<sup>−1</sup> h<sup>−1</sup>) solar hydrogen production activity.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance rGO-ZnO/WO3 heterojunction photocatalyst for solar green hydrogen generation\",\"authors\":\"Arundhati Sarkar,&nbsp;Arindam Mandal,&nbsp;Sayantanu Mandal,&nbsp;Surya Kanta Sen,&nbsp;Dipali Banerjee,&nbsp;Saibal Ganguly,&nbsp;Kajari Kargupta\",\"doi\":\"10.1007/s12039-023-02231-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel rGO (Reduced Graphene Oxide)-ZnO/WO<sub>3</sub> nanohybrid has tremendous commercialization potential for photocatalytic hydrogen generation because of its cheap production costs, specific optical properties, remarkable stability and conductivity. It decreases charge recombination, improves photoelectronic transit, and broadens visible light absorption with rGO. This study developed a simple nano-casting procedure to include WO<sub>3</sub> nanocuboids into rGO-ZnO nanorods formed by hydrothermal treatment with the appropriate amount of ZnO grafted on rGO. Improved photocatalytic activity has been discovered in rGO-ZnO nanocomposite with 1:3 ratios. The optimized powder rGO/ZnO (1:3) nanocomposite paired with WO<sub>3</sub> exhibits the maximum photocatalytic hydrogen production activity (13.29 mmoles g<sup>−1</sup>h<sup>−1</sup>), which is approximately 1.27 times more active than the powder rGO/ZnO (1:3) nanocomposite (10.46 mmoles g<sup>−1</sup> h<sup>−1</sup>). The contributions of rGO/ZnO (1:3) and integrated WO<sub>3</sub> to photocatalytic hydrogen evolution enhancement have been fully investigated through experiment and characterization. The logical design and bottom-up synthesis of eco-friendly energy conversion materials with high performance and low-cost lead to commercialization and become the focal point of this effort.</p><h3>Graphical abstract</h3><p>Optimized rGO-ZnO (1:3)/ WO<sub>3</sub> heterojunction: a robust photocatalyst with a low band gap exhibits a slow rate of electron-hole recombination and remarkable (13.29 mmole g<sup>−1</sup> h<sup>−1</sup>) solar hydrogen production activity.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-023-02231-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-023-02231-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种新型 rGO(还原石墨烯氧化物)-ZnO/WO3 纳米杂化物因其低廉的生产成本、特殊的光学特性、显著的稳定性和导电性,在光催化制氢方面具有巨大的商业化潜力。与 rGO 相比,它能减少电荷重组,改善光电子传输,并拓宽可见光吸收。本研究开发了一种简单的纳米铸造程序,将 WO3 纳米立方体加入经水热处理形成的 rGO-ZnO 纳米棒中,并在 rGO 上接枝了适量的 ZnO。在比例为 1:3 的 rGO-ZnO 纳米复合材料中发现了更好的光催化活性。与 WO3 配对的优化粉末 rGO/ZnO (1:3) 纳米复合材料表现出最大的光催化制氢活性(13.29 毫摩尔 g-1h-1),是粉末 rGO/ZnO (1:3) 纳米复合材料(10.46 毫摩尔 g-1 h-1)的约 1.27 倍。通过实验和表征充分研究了 rGO/ZnO (1:3) 和集成 WO3 对光催化氢气进化增强的贡献。图解摘要优化的 rGO-ZnO (1:3)/ WO3 异质结:一种具有低带隙的强效光催化剂,电子-空穴重组速率慢,太阳能制氢活性显著(13.29 mmole g-1 h-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Performance rGO-ZnO/WO3 heterojunction photocatalyst for solar green hydrogen generation

A novel rGO (Reduced Graphene Oxide)-ZnO/WO3 nanohybrid has tremendous commercialization potential for photocatalytic hydrogen generation because of its cheap production costs, specific optical properties, remarkable stability and conductivity. It decreases charge recombination, improves photoelectronic transit, and broadens visible light absorption with rGO. This study developed a simple nano-casting procedure to include WO3 nanocuboids into rGO-ZnO nanorods formed by hydrothermal treatment with the appropriate amount of ZnO grafted on rGO. Improved photocatalytic activity has been discovered in rGO-ZnO nanocomposite with 1:3 ratios. The optimized powder rGO/ZnO (1:3) nanocomposite paired with WO3 exhibits the maximum photocatalytic hydrogen production activity (13.29 mmoles g−1h−1), which is approximately 1.27 times more active than the powder rGO/ZnO (1:3) nanocomposite (10.46 mmoles g−1 h−1). The contributions of rGO/ZnO (1:3) and integrated WO3 to photocatalytic hydrogen evolution enhancement have been fully investigated through experiment and characterization. The logical design and bottom-up synthesis of eco-friendly energy conversion materials with high performance and low-cost lead to commercialization and become the focal point of this effort.

Graphical abstract

Optimized rGO-ZnO (1:3)/ WO3 heterojunction: a robust photocatalyst with a low band gap exhibits a slow rate of electron-hole recombination and remarkable (13.29 mmole g−1 h−1) solar hydrogen production activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
期刊最新文献
Copper-catalyzed synthesis of 3-substituted isocoumarins from 2-halogenation benzoic acid and alkynes Microfluidic synthesis of calcium tungstate CaWO4 Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid Ultrasound-assisted synthesis and structure elucidation of novel quinoline-pyrazolo[1,5-a]pyrimidine hybrids for anti-malarial potential against drug-sensitive and drug-resistant malaria parasites and molecular docking Lignin-derived Brønsted acidic catalyst for the green synthesis of biologically relevant indole derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1