酸枣ZjPYL8的功能特征:提高拟南芥气孔和根对ABA的敏感性

IF 0.6 4区 农林科学 Q4 HORTICULTURE Acta Scientiarum Polonorum Hortorum Cultus Pub Date : 2023-12-22 DOI:10.24326/asp.hc.2023.5154
Peiyan Wang, Lanting Qi, Junna Song, Ruojia Zhu, Xiaowei Han, Yu Liu, Xianyun Wang, Yuguang Zheng, Zhao Liu
{"title":"酸枣ZjPYL8的功能特征:提高拟南芥气孔和根对ABA的敏感性","authors":"Peiyan Wang, Lanting Qi, Junna Song, Ruojia Zhu, Xiaowei Han, Yu Liu, Xianyun Wang, Yuguang Zheng, Zhao Liu","doi":"10.24326/asp.hc.2023.5154","DOIUrl":null,"url":null,"abstract":"Abscisic acid (ABA) is a plant hormone that plays a crucial role in regulating plant growth, development, and adaptation to stress. The growth of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. Chou, commonly known as Suanzao in Chinese, is significantly influenced by environmental factors, particularly drought and salt stresses. In this study, we isolated and characterized a putative ABA receptor, ZjPYL8, from Sour jujube. To investigate the effects of ZjPYL8 overexpression on ABA-responsive pathways, we introduced it into Arabidopsis thaliana (A. thaliana) and examined the resulting phenotypes. Our results demonstrated that overexpression of ZjPYL8 in A. thaliana led to a significant reduction in stomatal aperture and root length under ABA treatment, while the wild type (WT) was relatively insensitive to ABA. Moreover, ZjPYL8 transgenic plants exhibited shorter roots under salt treatment than the WT did. These findings suggest that the overexpression of ZjPYL8 in A. thaliana enhances the plant's resistance to stress and support the hypothesis that ZjPYL8 serves as a putative ABA receptor in Sour jujube, which may improve the plant's adaptability to drought and salt stresses. ZjPYL8 appears to mediate plant responses to ABA, similar to most ABA receptors in A. thaliana, such as stomatal closure and root length.","PeriodicalId":7230,"journal":{"name":"Acta Scientiarum Polonorum Hortorum Cultus","volume":"14 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana\",\"authors\":\"Peiyan Wang, Lanting Qi, Junna Song, Ruojia Zhu, Xiaowei Han, Yu Liu, Xianyun Wang, Yuguang Zheng, Zhao Liu\",\"doi\":\"10.24326/asp.hc.2023.5154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abscisic acid (ABA) is a plant hormone that plays a crucial role in regulating plant growth, development, and adaptation to stress. The growth of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. Chou, commonly known as Suanzao in Chinese, is significantly influenced by environmental factors, particularly drought and salt stresses. In this study, we isolated and characterized a putative ABA receptor, ZjPYL8, from Sour jujube. To investigate the effects of ZjPYL8 overexpression on ABA-responsive pathways, we introduced it into Arabidopsis thaliana (A. thaliana) and examined the resulting phenotypes. Our results demonstrated that overexpression of ZjPYL8 in A. thaliana led to a significant reduction in stomatal aperture and root length under ABA treatment, while the wild type (WT) was relatively insensitive to ABA. Moreover, ZjPYL8 transgenic plants exhibited shorter roots under salt treatment than the WT did. These findings suggest that the overexpression of ZjPYL8 in A. thaliana enhances the plant's resistance to stress and support the hypothesis that ZjPYL8 serves as a putative ABA receptor in Sour jujube, which may improve the plant's adaptability to drought and salt stresses. ZjPYL8 appears to mediate plant responses to ABA, similar to most ABA receptors in A. thaliana, such as stomatal closure and root length.\",\"PeriodicalId\":7230,\"journal\":{\"name\":\"Acta Scientiarum Polonorum Hortorum Cultus\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Scientiarum Polonorum Hortorum Cultus\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.24326/asp.hc.2023.5154\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum Polonorum Hortorum Cultus","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.24326/asp.hc.2023.5154","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

脱落酸(ABA)是一种植物激素,在调节植物生长、发育和适应胁迫方面起着至关重要的作用。Ziziphus jujuba Mill.本研究从酸枣中分离并鉴定了一种推定的 ABA 受体 ZjPYL8。为了研究 ZjPYL8 过表达对 ABA 响应途径的影响,我们将其导入拟南芥(A. thaliana)中,并考察了由此产生的表型。结果表明,在拟南芥中过表达 ZjPYL8 会导致气孔孔径和根长在 ABA 处理下显著减少,而野生型(WT)对 ABA 相对不敏感。此外,在盐处理条件下,ZjPYL8 转基因植株比 WT 表现出更短的根系。这些研究结果表明,ZjPYL8在A. thaliana中的过表达增强了植物的抗逆性,并支持了ZjPYL8在酸枣中作为一种推定的ABA受体的假设,这可能会提高植物对干旱和盐胁迫的适应性。ZjPYL8 似乎能介导植物对 ABA 的反应,这与 A. thaliana 中的大多数 ABA 受体相似,如气孔关闭和根长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana
Abscisic acid (ABA) is a plant hormone that plays a crucial role in regulating plant growth, development, and adaptation to stress. The growth of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. Chou, commonly known as Suanzao in Chinese, is significantly influenced by environmental factors, particularly drought and salt stresses. In this study, we isolated and characterized a putative ABA receptor, ZjPYL8, from Sour jujube. To investigate the effects of ZjPYL8 overexpression on ABA-responsive pathways, we introduced it into Arabidopsis thaliana (A. thaliana) and examined the resulting phenotypes. Our results demonstrated that overexpression of ZjPYL8 in A. thaliana led to a significant reduction in stomatal aperture and root length under ABA treatment, while the wild type (WT) was relatively insensitive to ABA. Moreover, ZjPYL8 transgenic plants exhibited shorter roots under salt treatment than the WT did. These findings suggest that the overexpression of ZjPYL8 in A. thaliana enhances the plant's resistance to stress and support the hypothesis that ZjPYL8 serves as a putative ABA receptor in Sour jujube, which may improve the plant's adaptability to drought and salt stresses. ZjPYL8 appears to mediate plant responses to ABA, similar to most ABA receptors in A. thaliana, such as stomatal closure and root length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
61
审稿时长
4-8 weeks
期刊介绍: In Acta Scientiarum Polonorum Hortorum Cultus we publish original research papers and review articles containing new and significant information on broad aspects of horticulture and related disciplines. The papers are published in English only, in six issues yearly.
期刊最新文献
Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana Impact of organic and conventional cultivation on seed quality of two soya bean varieties sown at different row spacings Establishing in vitro cultures of Pennisetum ‘Vertigo®’ and its shoot multiplication under different LED light quality Short-term effects of brassica cover crops on soil quality indicators in organic production in high tunnels Inoculating mycorrhiza fungi and growth-promoting bacteria and mulch of plant residues improve yield and essential oil production of anise (Pimpinella anisum L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1