基于改进型 Yolox 的交通标志检测算法

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-12-22 DOI:10.5755/j01.itc.52.4.34039
Teng Xu, Ling Ren, Tian Shi, Yuan Gao, Jian-Bang Ding, Rong-Chen Jin
{"title":"基于改进型 Yolox 的交通标志检测算法","authors":"Teng Xu, Ling Ren, Tian Shi, Yuan Gao, Jian-Bang Ding, Rong-Chen Jin","doi":"10.5755/j01.itc.52.4.34039","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel PVF-YOLO model to extract the multi-scale traffic sign features more effectively during car driving. Firstly, the original convolution module is replaced with the Omni-Dimensional convolution (ODconv) and the feature information obtained from the shallow feature layer is incorporated into the network. Secondly, this paper proposes a parallel structure block module for capturing multi-scale features. This module uses the Large Kernel Attention (LKA) and Visual Multilayer Perceptron (Visual MLP) to capture the information generated by the network model. It enhances the representation ability of feature maps. Next, in the process of training, the gradient concentration algorithm is used to optimize the initial Stochastic Gradient Descent (SGD). Under the condition of real-time detection, it improves the detection accuracy. Finally, to improve the robustness of the model, this paper conducts extensive experiments. Tsinghua-Tencent 100K (TT100K), Changsha University of Science and Technology CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) are used as the training data set. It verifies that the PVF-YOLO method proposed in this paper enhances the detection ability of traffic signs of different scales, and the detection speed and accuracy are better than the original model.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Sign Detection Algorithm Based on Improved Yolox\",\"authors\":\"Teng Xu, Ling Ren, Tian Shi, Yuan Gao, Jian-Bang Ding, Rong-Chen Jin\",\"doi\":\"10.5755/j01.itc.52.4.34039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel PVF-YOLO model to extract the multi-scale traffic sign features more effectively during car driving. Firstly, the original convolution module is replaced with the Omni-Dimensional convolution (ODconv) and the feature information obtained from the shallow feature layer is incorporated into the network. Secondly, this paper proposes a parallel structure block module for capturing multi-scale features. This module uses the Large Kernel Attention (LKA) and Visual Multilayer Perceptron (Visual MLP) to capture the information generated by the network model. It enhances the representation ability of feature maps. Next, in the process of training, the gradient concentration algorithm is used to optimize the initial Stochastic Gradient Descent (SGD). Under the condition of real-time detection, it improves the detection accuracy. Finally, to improve the robustness of the model, this paper conducts extensive experiments. Tsinghua-Tencent 100K (TT100K), Changsha University of Science and Technology CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) are used as the training data set. It verifies that the PVF-YOLO method proposed in this paper enhances the detection ability of traffic signs of different scales, and the detection speed and accuracy are better than the original model.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.4.34039\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.4.34039","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的 PVF-YOLO 模型,以更有效地提取汽车行驶过程中的多尺度交通标志特征。首先,将原有的卷积模块替换为全维卷积(ODconv),并将浅层特征层获得的特征信息纳入网络。其次,本文提出了一种用于捕捉多尺度特征的并行结构块模块。该模块使用大核注意力(LKA)和视觉多层感知器(Visual MLP)来捕捉网络模型生成的信息。它增强了特征图的表示能力。接下来,在训练过程中,使用梯度集中算法优化初始随机梯度下降(SGD)。在实时检测条件下,提高了检测精度。最后,为了提高模型的鲁棒性,本文进行了大量实验。本文使用清华-腾讯 100K(TT100K)、长沙理工大学 CCTSDB(CSUST Chinese Traffic Sign Detection Benchmark)作为训练数据集。实验验证了本文提出的 PVF-YOLO 方法提高了对不同尺度交通标志的检测能力,检测速度和准确率均优于原模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Sign Detection Algorithm Based on Improved Yolox
This paper proposes a novel PVF-YOLO model to extract the multi-scale traffic sign features more effectively during car driving. Firstly, the original convolution module is replaced with the Omni-Dimensional convolution (ODconv) and the feature information obtained from the shallow feature layer is incorporated into the network. Secondly, this paper proposes a parallel structure block module for capturing multi-scale features. This module uses the Large Kernel Attention (LKA) and Visual Multilayer Perceptron (Visual MLP) to capture the information generated by the network model. It enhances the representation ability of feature maps. Next, in the process of training, the gradient concentration algorithm is used to optimize the initial Stochastic Gradient Descent (SGD). Under the condition of real-time detection, it improves the detection accuracy. Finally, to improve the robustness of the model, this paper conducts extensive experiments. Tsinghua-Tencent 100K (TT100K), Changsha University of Science and Technology CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) are used as the training data set. It verifies that the PVF-YOLO method proposed in this paper enhances the detection ability of traffic signs of different scales, and the detection speed and accuracy are better than the original model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1