{"title":"CAugment:通过组合图像处理操作实现数据集多样化的方法","authors":"Wuliang Gao","doi":"10.5755/j01.itc.52.4.33828","DOIUrl":null,"url":null,"abstract":"In deep learning, model quality is extremely important. Consequently, the quality and the sufficiency of the datasets for training models have attracted considerable attention from both industry and academia. Automatic data augmentation, which provides a means of using image processing operators to generate data from existing datasets, is quite effective in searching for mutants of the images and expanding the training datasets. However, existing automatic data augmentation techniques often fail to fully exploit the potential of the data, failing to balance the search efficiency and the model accuracy. This paper presents CAugment, a novel approach to diversifying image datasets by combining image processing operators. Given a training image dataset, CAugment is composed of: 1) the three-level evolutionary algorithm (TLEA) that employs three levels of atomic operations for augmenting the dataset and an adaptive strategy for decreasing granularity and 2) a design that uses the three-dimensional evaluation method (TDEM) and a dHash algorithm to measure the diversity of the dataset. The search space can be expanded, which further improves model accuracy during training. We use CAugment to augment the CIFAR-10/100 and SVHN datasets and use the augmented datasets to train the WideResNet and Shake-Shake models. Our results show that the amount of data increases linearly along with the training epochs; in addition, the models trained by the CAugment-augmented datasets outperform those trained by the datasets augmented by the other techniques by up to 17.9% in accuracy on the SVHN dataset.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"58 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAugment: An Approach to Diversifying Dataset by Combining Image Processing Operations\",\"authors\":\"Wuliang Gao\",\"doi\":\"10.5755/j01.itc.52.4.33828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep learning, model quality is extremely important. Consequently, the quality and the sufficiency of the datasets for training models have attracted considerable attention from both industry and academia. Automatic data augmentation, which provides a means of using image processing operators to generate data from existing datasets, is quite effective in searching for mutants of the images and expanding the training datasets. However, existing automatic data augmentation techniques often fail to fully exploit the potential of the data, failing to balance the search efficiency and the model accuracy. This paper presents CAugment, a novel approach to diversifying image datasets by combining image processing operators. Given a training image dataset, CAugment is composed of: 1) the three-level evolutionary algorithm (TLEA) that employs three levels of atomic operations for augmenting the dataset and an adaptive strategy for decreasing granularity and 2) a design that uses the three-dimensional evaluation method (TDEM) and a dHash algorithm to measure the diversity of the dataset. The search space can be expanded, which further improves model accuracy during training. We use CAugment to augment the CIFAR-10/100 and SVHN datasets and use the augmented datasets to train the WideResNet and Shake-Shake models. Our results show that the amount of data increases linearly along with the training epochs; in addition, the models trained by the CAugment-augmented datasets outperform those trained by the datasets augmented by the other techniques by up to 17.9% in accuracy on the SVHN dataset.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"58 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.4.33828\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.4.33828","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
CAugment: An Approach to Diversifying Dataset by Combining Image Processing Operations
In deep learning, model quality is extremely important. Consequently, the quality and the sufficiency of the datasets for training models have attracted considerable attention from both industry and academia. Automatic data augmentation, which provides a means of using image processing operators to generate data from existing datasets, is quite effective in searching for mutants of the images and expanding the training datasets. However, existing automatic data augmentation techniques often fail to fully exploit the potential of the data, failing to balance the search efficiency and the model accuracy. This paper presents CAugment, a novel approach to diversifying image datasets by combining image processing operators. Given a training image dataset, CAugment is composed of: 1) the three-level evolutionary algorithm (TLEA) that employs three levels of atomic operations for augmenting the dataset and an adaptive strategy for decreasing granularity and 2) a design that uses the three-dimensional evaluation method (TDEM) and a dHash algorithm to measure the diversity of the dataset. The search space can be expanded, which further improves model accuracy during training. We use CAugment to augment the CIFAR-10/100 and SVHN datasets and use the augmented datasets to train the WideResNet and Shake-Shake models. Our results show that the amount of data increases linearly along with the training epochs; in addition, the models trained by the CAugment-augmented datasets outperform those trained by the datasets augmented by the other techniques by up to 17.9% in accuracy on the SVHN dataset.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.