J. Lee, Jung Hwan Oh, F. Karadeniz, Chang-Suk Kong, Y. Seo
{"title":"从黄花蒿中分离出的倍半萜对 3T3-L1 脂肪细胞成脂分化的抑制作用","authors":"J. Lee, Jung Hwan Oh, F. Karadeniz, Chang-Suk Kong, Y. Seo","doi":"10.3390/ijms25010200","DOIUrl":null,"url":null,"abstract":"Obesity and related complications are significant health issues in modern society, largely attributed to a sedentary lifestyle and a carbohydrate-rich diet. Since anti-obesity drugs often come with severe side effects, preventative measures are being sought globally, including dietary changes and functional foods that can counteract weight gain. In this context, plant-based metabolites are extensively studied for their advantageous biological effects against obesity. Several plants within the Artemisia genus have been reported to possess anti-adipogenic properties, preventing adipocytes from maturing and accumulating lipids. The present study investigated the anti-adipogenic potential of two sesquiterpenoids, reynosin and santamarine, isolated from A. scoparia in adipose-induced 3T3-L1 preadipocytes. Differentiating 3T3-L1 adipocytes treated with these isolated compounds displayed fewer adipogenic characteristics compared to untreated mature adipocytes. The results indicated that cells treated with reynosin and santamarine accumulated 55.0% and 52.5% fewer intracellular lipids compared to untreated control adipocytes, respectively. Additionally, the mRNA expression of the key adipogenic marker, transcription factor PPARγ, was suppressed by 87.2% and 91.7% following 60 μM reynosin and santamarine treatment, respectively, in differentiated adipocytes. Protein expression was also suppressed in a similar manner, at 92.7% and 82.5% by 60 μM reynosin and santamarine treatment, respectively. Likewise, SERBP1c and C/EBPα were also downregulated at both gene and protein levels in adipocytes treated with samples during differentiation. Further analysis suggested that the anti-adipogenic effect of the compounds might be a result of AMPK activation and the subsequent suppression of MAPK phosphorylation. Overall, the present study suggested that sesquiterpenoids, reynosin, and santamarine were two potential bioactive compounds with anti-adipogenic properties. Further research is needed to explore other bioactive agents within A. scoparia and elucidate the in vivo action mechanisms of reynosin and santamarine.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"10 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory Effects of Sesquiterpenoids Isolated from Artemisia scoparia on Adipogenic Differentiation of 3T3-L1 Preadipocytes\",\"authors\":\"J. Lee, Jung Hwan Oh, F. Karadeniz, Chang-Suk Kong, Y. Seo\",\"doi\":\"10.3390/ijms25010200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity and related complications are significant health issues in modern society, largely attributed to a sedentary lifestyle and a carbohydrate-rich diet. Since anti-obesity drugs often come with severe side effects, preventative measures are being sought globally, including dietary changes and functional foods that can counteract weight gain. In this context, plant-based metabolites are extensively studied for their advantageous biological effects against obesity. Several plants within the Artemisia genus have been reported to possess anti-adipogenic properties, preventing adipocytes from maturing and accumulating lipids. The present study investigated the anti-adipogenic potential of two sesquiterpenoids, reynosin and santamarine, isolated from A. scoparia in adipose-induced 3T3-L1 preadipocytes. Differentiating 3T3-L1 adipocytes treated with these isolated compounds displayed fewer adipogenic characteristics compared to untreated mature adipocytes. The results indicated that cells treated with reynosin and santamarine accumulated 55.0% and 52.5% fewer intracellular lipids compared to untreated control adipocytes, respectively. Additionally, the mRNA expression of the key adipogenic marker, transcription factor PPARγ, was suppressed by 87.2% and 91.7% following 60 μM reynosin and santamarine treatment, respectively, in differentiated adipocytes. Protein expression was also suppressed in a similar manner, at 92.7% and 82.5% by 60 μM reynosin and santamarine treatment, respectively. Likewise, SERBP1c and C/EBPα were also downregulated at both gene and protein levels in adipocytes treated with samples during differentiation. Further analysis suggested that the anti-adipogenic effect of the compounds might be a result of AMPK activation and the subsequent suppression of MAPK phosphorylation. Overall, the present study suggested that sesquiterpenoids, reynosin, and santamarine were two potential bioactive compounds with anti-adipogenic properties. Further research is needed to explore other bioactive agents within A. scoparia and elucidate the in vivo action mechanisms of reynosin and santamarine.\",\"PeriodicalId\":49179,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms25010200\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibitory Effects of Sesquiterpenoids Isolated from Artemisia scoparia on Adipogenic Differentiation of 3T3-L1 Preadipocytes
Obesity and related complications are significant health issues in modern society, largely attributed to a sedentary lifestyle and a carbohydrate-rich diet. Since anti-obesity drugs often come with severe side effects, preventative measures are being sought globally, including dietary changes and functional foods that can counteract weight gain. In this context, plant-based metabolites are extensively studied for their advantageous biological effects against obesity. Several plants within the Artemisia genus have been reported to possess anti-adipogenic properties, preventing adipocytes from maturing and accumulating lipids. The present study investigated the anti-adipogenic potential of two sesquiterpenoids, reynosin and santamarine, isolated from A. scoparia in adipose-induced 3T3-L1 preadipocytes. Differentiating 3T3-L1 adipocytes treated with these isolated compounds displayed fewer adipogenic characteristics compared to untreated mature adipocytes. The results indicated that cells treated with reynosin and santamarine accumulated 55.0% and 52.5% fewer intracellular lipids compared to untreated control adipocytes, respectively. Additionally, the mRNA expression of the key adipogenic marker, transcription factor PPARγ, was suppressed by 87.2% and 91.7% following 60 μM reynosin and santamarine treatment, respectively, in differentiated adipocytes. Protein expression was also suppressed in a similar manner, at 92.7% and 82.5% by 60 μM reynosin and santamarine treatment, respectively. Likewise, SERBP1c and C/EBPα were also downregulated at both gene and protein levels in adipocytes treated with samples during differentiation. Further analysis suggested that the anti-adipogenic effect of the compounds might be a result of AMPK activation and the subsequent suppression of MAPK phosphorylation. Overall, the present study suggested that sesquiterpenoids, reynosin, and santamarine were two potential bioactive compounds with anti-adipogenic properties. Further research is needed to explore other bioactive agents within A. scoparia and elucidate the in vivo action mechanisms of reynosin and santamarine.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).