Natasha Nigar, Amna Wajid, S. A. Ajagbe, Matthew O. Adigun
{"title":"基于深度学习的智能框架,用于大流行病期间的在线古兰经学习","authors":"Natasha Nigar, Amna Wajid, S. A. Ajagbe, Matthew O. Adigun","doi":"10.1155/2023/5541699","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic influenced the whole world and changed social life globally. Social distancing is an effective strategy adopted by all countries to prevent humans from being infected. Al-Quran is the holy book of Muslims and its listening and reading is one of the obligatory activities. Close contact is essential in traditional learning system; however, most of the Al-Quran learning schools were locked down to minimize the spread of COVID-19 infection. To address this limitation, in this paper, we propose a novel system using deep learning to identify the correct recitation of individual alphabets, words from a recited verse and a complete verse of Al-Quran to assist the reciter. Moreover, in the proposed approach, if the user recites correctly, his/her voice is also added to the existing dataset to leverage proposed approach effectiveness. We employ mel-frequency cepstral coefficients (MFCC) to extract voice features and long short-term memory (LSTM), a recurrent neural network (RNN) for classification. The said approach is validated using the Al-Quran dataset. The results demonstrate that the proposed system outperforms the state-of-the-art approaches with an accuracy rate of 97.7%. This system will help the Muslim community all over the world to recite the Al-Quran in the right way in the absence of human help due to similar future pandemics.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Framework Based on Deep Learning for Online Quran Learning during Pandemic\",\"authors\":\"Natasha Nigar, Amna Wajid, S. A. Ajagbe, Matthew O. Adigun\",\"doi\":\"10.1155/2023/5541699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic influenced the whole world and changed social life globally. Social distancing is an effective strategy adopted by all countries to prevent humans from being infected. Al-Quran is the holy book of Muslims and its listening and reading is one of the obligatory activities. Close contact is essential in traditional learning system; however, most of the Al-Quran learning schools were locked down to minimize the spread of COVID-19 infection. To address this limitation, in this paper, we propose a novel system using deep learning to identify the correct recitation of individual alphabets, words from a recited verse and a complete verse of Al-Quran to assist the reciter. Moreover, in the proposed approach, if the user recites correctly, his/her voice is also added to the existing dataset to leverage proposed approach effectiveness. We employ mel-frequency cepstral coefficients (MFCC) to extract voice features and long short-term memory (LSTM), a recurrent neural network (RNN) for classification. The said approach is validated using the Al-Quran dataset. The results demonstrate that the proposed system outperforms the state-of-the-art approaches with an accuracy rate of 97.7%. This system will help the Muslim community all over the world to recite the Al-Quran in the right way in the absence of human help due to similar future pandemics.\",\"PeriodicalId\":44894,\"journal\":{\"name\":\"Applied Computational Intelligence and Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Intelligence and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5541699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5541699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Intelligent Framework Based on Deep Learning for Online Quran Learning during Pandemic
The COVID-19 pandemic influenced the whole world and changed social life globally. Social distancing is an effective strategy adopted by all countries to prevent humans from being infected. Al-Quran is the holy book of Muslims and its listening and reading is one of the obligatory activities. Close contact is essential in traditional learning system; however, most of the Al-Quran learning schools were locked down to minimize the spread of COVID-19 infection. To address this limitation, in this paper, we propose a novel system using deep learning to identify the correct recitation of individual alphabets, words from a recited verse and a complete verse of Al-Quran to assist the reciter. Moreover, in the proposed approach, if the user recites correctly, his/her voice is also added to the existing dataset to leverage proposed approach effectiveness. We employ mel-frequency cepstral coefficients (MFCC) to extract voice features and long short-term memory (LSTM), a recurrent neural network (RNN) for classification. The said approach is validated using the Al-Quran dataset. The results demonstrate that the proposed system outperforms the state-of-the-art approaches with an accuracy rate of 97.7%. This system will help the Muslim community all over the world to recite the Al-Quran in the right way in the absence of human help due to similar future pandemics.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.