利用分层贝叶斯模型重新校准单一研究效应大小

Zhipeng Cao, Matthew McCabe, Peter Callas, R. Cupertino, J. Ottino-González, Alistair Murphy, Devarshi Pancholi, N. Schwab, Orr Catherine, Kent Hutchison, J. Cousijn, Alain Dagher, John J. Foxe, A. Goudriaan, Robert Hester, Chiang‐Shan R. Li, Wesley K. Thompson, Angelica M. Morales, Edythe D. London, V. Lorenzetti, M. Luijten, Rocio Martin-Santos, R. Momenan, Martin P. Paulus, L. Schmaal, Rajita Sinha, Nadia Solowij, D. Stein, Elliot A. Stein, A. Uhlmann, R. V. van Holst, D. Veltman, R. Wiers, Murat Yücel, Sheng Zhang, P. Conrod, S. Mackey, Hugh Garavan
{"title":"利用分层贝叶斯模型重新校准单一研究效应大小","authors":"Zhipeng Cao, Matthew McCabe, Peter Callas, R. Cupertino, J. Ottino-González, Alistair Murphy, Devarshi Pancholi, N. Schwab, Orr Catherine, Kent Hutchison, J. Cousijn, Alain Dagher, John J. Foxe, A. Goudriaan, Robert Hester, Chiang‐Shan R. Li, Wesley K. Thompson, Angelica M. Morales, Edythe D. London, V. Lorenzetti, M. Luijten, Rocio Martin-Santos, R. Momenan, Martin P. Paulus, L. Schmaal, Rajita Sinha, Nadia Solowij, D. Stein, Elliot A. Stein, A. Uhlmann, R. V. van Holst, D. Veltman, R. Wiers, Murat Yücel, Sheng Zhang, P. Conrod, S. Mackey, Hugh Garavan","doi":"10.3389/fnimg.2023.1138193","DOIUrl":null,"url":null,"abstract":"There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance.We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method.The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = −0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments.Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"40 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recalibrating single-study effect sizes using hierarchical Bayesian models\",\"authors\":\"Zhipeng Cao, Matthew McCabe, Peter Callas, R. Cupertino, J. Ottino-González, Alistair Murphy, Devarshi Pancholi, N. Schwab, Orr Catherine, Kent Hutchison, J. Cousijn, Alain Dagher, John J. Foxe, A. Goudriaan, Robert Hester, Chiang‐Shan R. Li, Wesley K. Thompson, Angelica M. Morales, Edythe D. London, V. Lorenzetti, M. Luijten, Rocio Martin-Santos, R. Momenan, Martin P. Paulus, L. Schmaal, Rajita Sinha, Nadia Solowij, D. Stein, Elliot A. Stein, A. Uhlmann, R. V. van Holst, D. Veltman, R. Wiers, Murat Yücel, Sheng Zhang, P. Conrod, S. Mackey, Hugh Garavan\",\"doi\":\"10.3389/fnimg.2023.1138193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance.We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method.The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = −0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments.Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"40 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2023.1138193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2023.1138193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们越来越关注小型神经影像研究中普遍存在的夸大效应大小的问题,但目前还没有研究针对小样本重新校准效应大小估计值。为了解决这个问题,我们提出了一种分层贝叶斯模型来调整单项研究效应大小,同时纳入对抽样方差的定制估计。我们估计了 21 项单项研究(病例总数:903;对照总数:996)中酒精、尼古丁、可卡因、甲基苯丙胺或大麻依赖者与非依赖者之间大脑结构特征的病例对照差异的效应大小。然后,采用分层贝叶斯方法对特定研究的效应大小进行建模,即从高阶总体分布中对特定研究效应大小分布的参数进行采样。结果表明,在个别研究中观察到的原始效应大小的情况下,特定研究估计值的后验分布向总体估计值收缩。原始效应大小(即 Cohen's d)与后验分布点估计值之间的差异从 0 到 0.97 不等。调整幅度与样本大小呈负相关(r = -0.27,p < 0.001),与经验估计的抽样方差呈正相关(r = 0.40,p < 0.001),这表明样本较小和抽样方差较大的研究往往会有更大的调整。这表明,贝叶斯法利用现有知识是一种有效的替代方法,可以改善单项研究的效应大小估计,尤其是对于样本较小的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recalibrating single-study effect sizes using hierarchical Bayesian models
There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance.We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method.The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = −0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments.Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurological complications of left atrial myxoma: a case report on stroke with left atrial myxoma and postoperative brain metastasis and cerebral aneurysm. Resting-state fMRI seizure onset localization meta-analysis: comparing rs-fMRI to other modalities including surgical outcomes. Mediterranean diet and brain functional connectivity in a population without dementia. Inferring neurocognition using artificial intelligence on brain MRIs. Adolescent brain maturation associated with environmental factors: a multivariate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1