冻土变化对中国东北地区土壤有机碳储量的影响

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-12-20 DOI:10.3390/f15010014
Yang Song, Shuai Huang, Haiying Zhang, Qin Wang, Lin Ding, Yanjie Liu
{"title":"冻土变化对中国东北地区土壤有机碳储量的影响","authors":"Yang Song, Shuai Huang, Haiying Zhang, Qin Wang, Lin Ding, Yanjie Liu","doi":"10.3390/f15010014","DOIUrl":null,"url":null,"abstract":"Climate warming has resulted in significant changes in permafrost in Northeast China, leading to notable alterations in soil organic carbon (SOC) stocks. These changes are crucial for both the global carbon cycle and climate change, as well as directly impacting the sustainable development of ecosystems. In order to examine the SOC dynamics and the impact of permafrost changes on SOC, we investigate the changes of permafrost extent based on a regression model and TTOP (top temperature of permafrost) model and the relationship between land use and land cover (LULC), SOC stocks, and permafrost changes in Northeast China. The results showing a shrinking permafrost area from 37.43 × 104 km2 to 16.48 × 104 km2 during the period from the 1980s to the 2010s in Northeast China, and the SOC stock decreased by 24.18 Tg C from the 1980s to the 1990s and then rapidly increased by 102.84 Tg C in the 2000s. Permafrost degradation speeds up the succession of LULC, impacting about 90% of the SOC in permafrost regions. The relationship between permafrost changes and SOC in Northeast China shows that permafrost degradation significantly reduces SOC stocks in the short term but increases SOC stocks in the long term, and that LULC play a crucial role in regulating this relationship. The goals of this study are to acquire an understanding of permafrost status and deepening insights into the dynamics of SOC. Simultaneously, the study aims to furnish valuable scientific references for shaping policies on sustainable land use and management in the future, all the while advancing the cause of ecological equilibrium and sustainable development in Northeast China and other areas.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"110 14","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Permafrost Change on Soil Organic Carbon Stocks in Northeast China\",\"authors\":\"Yang Song, Shuai Huang, Haiying Zhang, Qin Wang, Lin Ding, Yanjie Liu\",\"doi\":\"10.3390/f15010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate warming has resulted in significant changes in permafrost in Northeast China, leading to notable alterations in soil organic carbon (SOC) stocks. These changes are crucial for both the global carbon cycle and climate change, as well as directly impacting the sustainable development of ecosystems. In order to examine the SOC dynamics and the impact of permafrost changes on SOC, we investigate the changes of permafrost extent based on a regression model and TTOP (top temperature of permafrost) model and the relationship between land use and land cover (LULC), SOC stocks, and permafrost changes in Northeast China. The results showing a shrinking permafrost area from 37.43 × 104 km2 to 16.48 × 104 km2 during the period from the 1980s to the 2010s in Northeast China, and the SOC stock decreased by 24.18 Tg C from the 1980s to the 1990s and then rapidly increased by 102.84 Tg C in the 2000s. Permafrost degradation speeds up the succession of LULC, impacting about 90% of the SOC in permafrost regions. The relationship between permafrost changes and SOC in Northeast China shows that permafrost degradation significantly reduces SOC stocks in the short term but increases SOC stocks in the long term, and that LULC play a crucial role in regulating this relationship. The goals of this study are to acquire an understanding of permafrost status and deepening insights into the dynamics of SOC. Simultaneously, the study aims to furnish valuable scientific references for shaping policies on sustainable land use and management in the future, all the while advancing the cause of ecological equilibrium and sustainable development in Northeast China and other areas.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"110 14\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010014\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010014","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

气候变暖导致中国东北地区的永久冻土发生了重大变化,从而导致土壤有机碳(SOC)储量发生显著变化。这些变化对全球碳循环和气候变化至关重要,并直接影响生态系统的可持续发展。为了研究 SOC 的动态变化以及冻土变化对 SOC 的影响,我们基于回归模型和 TTOP(冻土层顶温)模型研究了中国东北地区冻土范围的变化,以及土地利用和土地覆盖(LULC)、SOC 储量和冻土变化之间的关系。结果表明,20 世纪 80 年代至 2010 年代,中国东北地区的冻土面积从 37.43×104 km2 缩小到 16.48×104 km2,SOC 储量从 20 世纪 80 年代至 90 年代减少了 24.18 Tg C,然后在 2000 年代迅速增加了 102.84 Tg C。冻土退化加速了 LULC 的演替,影响了冻土地区约 90% 的 SOC。中国东北地区冻土变化与 SOC 之间的关系表明,冻土退化在短期内会显著减少 SOC 储量,但在长期内会增加 SOC 储量,而 LULC 在调节这种关系中起着至关重要的作用。本研究的目标是了解冻土状况,加深对 SOC 动态的认识。同时,本研究还旨在为未来制定可持续土地利用和管理政策提供有价值的科学参考,同时推进中国东北及其他地区的生态平衡和可持续发展事业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Permafrost Change on Soil Organic Carbon Stocks in Northeast China
Climate warming has resulted in significant changes in permafrost in Northeast China, leading to notable alterations in soil organic carbon (SOC) stocks. These changes are crucial for both the global carbon cycle and climate change, as well as directly impacting the sustainable development of ecosystems. In order to examine the SOC dynamics and the impact of permafrost changes on SOC, we investigate the changes of permafrost extent based on a regression model and TTOP (top temperature of permafrost) model and the relationship between land use and land cover (LULC), SOC stocks, and permafrost changes in Northeast China. The results showing a shrinking permafrost area from 37.43 × 104 km2 to 16.48 × 104 km2 during the period from the 1980s to the 2010s in Northeast China, and the SOC stock decreased by 24.18 Tg C from the 1980s to the 1990s and then rapidly increased by 102.84 Tg C in the 2000s. Permafrost degradation speeds up the succession of LULC, impacting about 90% of the SOC in permafrost regions. The relationship between permafrost changes and SOC in Northeast China shows that permafrost degradation significantly reduces SOC stocks in the short term but increases SOC stocks in the long term, and that LULC play a crucial role in regulating this relationship. The goals of this study are to acquire an understanding of permafrost status and deepening insights into the dynamics of SOC. Simultaneously, the study aims to furnish valuable scientific references for shaping policies on sustainable land use and management in the future, all the while advancing the cause of ecological equilibrium and sustainable development in Northeast China and other areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1